• Title/Summary/Keyword: 온습도 환경

Search Result 146, Processing Time 0.027 seconds

Effect of Different Height of Side Vents on Microclimate in a Single-Span Greenhouse during Natural Ventilation (측창 개폐 높이에 따른 자연환기 단동온실의 미기상환경 비교 분석)

  • Kim, Seong-Heon;Kim, Hyung-Kweon;Lee, Si-Young;Kwon, Jin-Kyung
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.90-97
    • /
    • 2022
  • This study was carried out to investigate the effect of side vent heights on temperature and relative humidity inside and outside the single-span plastic greenhouse (W: 7 m, L: 40 m H: 3.9 m) during natural ventilation. Four different heights (120, 100, 80, 60 cm) of the side vent were used as an experimental condition. Variations of temperature and relative humidity inside and outside the greenhouse and the differences between heights were compared by using one-way ANOVA. In the daytime, the difference in temperature between inside and outside the greenhouse was dropped from 14.0℃ to 7.1℃ as the side vent height increased. The temperature difference in the nighttime was less than 0.2℃ regardless of the height. One-way ANOVA on the temperature difference between heights presented that the statistical significance was founded between all of the combinations of height in the daytime. The difference in relative humidity between inside and outside the greenhouse was grown from -13.8% to -22.2% with a decrease in the side vent height. The humidity difference in the nighttime was less than 1% regardless of the height. One-way ANOVA on the humidity difference revealed that most of the side vent heights showed significance in the daytime but between 100 and 80 cm was not significant. It seemed because the external air became cooler during the experiment with a height of 80 cm. Conclusively, this study empirically demonstrated that the higher side vents resulted in the decrease of differences in temperature and relative humidity between inside and outside the greenhouse, and also the effect of side vent height was statistically significant. This study may be helpful for deciding the height of the side vent effective for controlling temperature and relative humidity in a single-span greenhouse during natural ventilation.

Production and Spatiotemporal Analysis of High-Resolution Temperature-Humidity Index and Heat Stress Days Distribution (고해상도 온습도지수 및 고온 스트레스 일수 분포도의 제작과 이를 활용한 시공간적 변화 분석)

  • Dae Gyoon Kang;Dae-Jun Kim;Jin-Hee Kim;Eun-Jeong Yun;Eun-Hye Ban;Yong Seok Kim;Sera Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.446-454
    • /
    • 2023
  • The impact of climate change on agriculture is substantial, especially as global warming is projected to lead to varying temperature and humidity patterns in the future. These changes pose a higher risk for both crops and livestock, exposing them to environmental stressors under altered climatic conditions. Specifically, as temperatures are expected to rise, the risk of heat stress is assessable through the Temperature-Humidity Index (THI), derived from temperature and relative humidity data. This study involved the comparison of THI collected from 10 Korea Meteorological Administration ASOS stations spanning a 60-year period from 1961 to 2020. Moreover, high-resolution temperature and humidity distribution data from 1981 to 2020 were employed to generate high-resolution TH I distributions, analyzing temporal changes. Additionally, the number of days characterized by heat stress, derived from TH I, was compared over different time periods. Generally, TH I showed an upward trend over the past, albeit with varying rates across different locations. As TH I increased, the frequency of heat stress days also rose, indicating potential future cost increases in the livestock industry due to heat-related challenges. The findings emphasize the feasibility of evaluating heat stress risk in livestock using THI and underscore the need for research analyzing THI under future climate change scenarios.

Evaluation of Temperature and humidity changes in Concrete (콘크리트 내부의 온.습도 평가)

  • Park, Dong-Cheon;Yun, Eun-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.235-236
    • /
    • 2010
  • The temperature and humidity in concrete changes differently depending upon factors such as exposure direction, W/C and external environment conditions. The temperature and humidity are also different depending upon internal depth of concrete. In this study We've evaluated the change of the temperature and humidity in the concrete based upon the factors we mentioned above for two years, analyzed these measured results and reviewed the results theoretically.

  • PDF

A Comparison Evaluation on the Indoor Temperature and Humidity Control Effect of Hwang-To Brick and Traditional Window as Exterior envelops in Mock-up Room (Mock-up 실험을 통한 황토벽과 전통창호의 실내 온습도 조절효과에 대한 비교평가)

  • Song, Min-Jeong;Shin, Hoon
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.131-137
    • /
    • 2010
  • This study aims to know temperature and humidity handling ability of Hwang-To brick and traditional paper window's in mock-up room test. To achieve these goals, mock-up room test was carried out. The results are as follows. 1) There are no significant differences among specimen in temperature handling capacity. 2) Traditional paper windows are very sensitive when compared with glass window in humidity control. 3) Traditional paper windows have a big handling capacity in humidity control when vapors letting out in mock-up room. 4) Hwang-To brick case is more stable than other cases in relative humidity variances because it has more potential to contain humidity.

IoT-Based Home Temperature and Humidity Control System (IoT 기반 가정용 온·습도 제어 시스템)

  • Choi, Jung-Han;Kim, Seung-Min;Kim, Jin-Woo;Kim, Sung-Hyun;Park, Seong-Min;Kim, Mi-Hye;Seo, Dongmahn
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.154-155
    • /
    • 2015
  • 본 연구에서는 온도와 습도 데이터를 수집하여 주택의 실내 온습도를 제어하는 시스템을 제안한다. 제안하는 시스템은 IoT 기반이 되는 아두이노와 센서들을 활용하여 수집한 데이터를 에이전트 서버에 저장 관리한다. 에이전트 서버는 저장된 데이터를 기반으로 하여 주택의 실내 온습도를 제어하여 쾌적한 주거 환경을 제공한다.

Damage Factor Interpretation and Conservational Environment Assessment by Microclimatic Analysis of Hyeonpung Seokbinggo (Ice-storing Stone Warehouse), Korea (현풍석빙고의 미기후 분석을 통한 손상요인 해석과 보존환경 평가)

  • Kim, Ji-Young;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.385-395
    • /
    • 2010
  • This study aimed to identify weathering factors and to assess the conservation environment through microclimatic analysis of Hyeonpung Seokbinggo (ice-storing stone warehouse). The stone blocks inside Seokbinggo suffered crack, displacement, break-out, exfoliation, efflorescence, brown and black discoloration, and biological colonization. Biological colonization represented the maximum deterioration rate(24%) among those weathering forms. The indoor microclimate showed parallel patterns with outdoor one, but the indoor temperature and relative humidity ranged far narrower than outdoor and remained steady. The environmental characteristics resulted from blocking-out of outdoor heat by the closed entrance and surrounding microtopography. This prevented water condensation and freezing effects, so that it reduced physical deterioration of rock, and maximized ice-storing effect for long time. However, contrary to positive effect, extremely high relative humidity over 99% accelerated biological colonization inside the Seokbinggo.

Design of A Sensor System to Monitoring the Growing Environment of Crops (농작물 재배환경을 모니터링 센서 시스템의 설계)

  • Xu, Chen-lin;Lee, Hyun-chang;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.217-218
    • /
    • 2015
  • With the development of sensor technology and agricultural modernization, sensor application in facility agriculture is more and more widely. Wireless sensor network (WSN) will have to change the whole system of agricultural production, it has a huge role. This paper is based on the Arduino to design a system combining the temperature and humidity sensors with LCD, which to achieve monitoring growing environmental of crops.

  • PDF

Real-time Monitoring of Temperature and Relative Humidity and Visualization of Pest Survey Data for Integrated Pest Management in Collection Storage Area (유물 공간의 종합적 유해생물 관리(Integrated Pest Management)를 위한 실시간(Real-Time) 온습도 모니터링 및 유해 생물 조사 자료의 시각화)

  • Im, Ik-Gyun;Lim, Seong-Duk;Han, Gyu-Seong
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.440-450
    • /
    • 2021
  • Temperature and humidity data collection using real-time sensors and data loggers was conducted for integrated pest management in the collection storage and exhibition space of the Jeongnimsaji Museum, Buyeo. The real-time temperature and humidity monitoring system collected measurement data every 30 minutes and enabled real-time confirmation of the data through a linked application. If the temperature and humidity data measured in the real-time temperature and humidity monitoring system exceeds the set range, a push notification was sent to the mobile phone of the person in charge to provide status information to establish a continuous management system. Through this, it was possible to immediately recognize and take action when the temperature range exceeded the recommended relic temperature in August. We performed data visualization on the concentration of airborne fungus in the storage area and the inflow path and density of insects. Based on the recommended criteria presented by the National Institute of Cultural Heritage, The data on the spatial and temporal concentration of airborne fungus inside the collection storage were found to be maintained at a value below the standard recommended by the National Institute of Cultural Heritage (80 CFU/m3). Also, as a result of the insect inflow survey, no insects were captured inside the storage area, and in the case of the exhibition space, insects such as Scutigera coleoptrata, Loxoblemmus arietulus, Diestrammena asynamora, Koreoniscus racovitzai were captured. Based on this, as a result of visualization according to the individual density of captured insects by area, it was confirmed that the main inflow paths of insects were the external entrance and the toilet area.

Smart Factory's Environment Monitoring System using Bluetooth (블루투스를 이용한 스마트팩토리의 환경 모니터링 시스템)

  • Lee, Hwa-Yeong;Lee, Sung-Jin;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.224-226
    • /
    • 2021
  • Recently, in order to increase the efficiency of the product production process, the automation of facilities and devices in the factory is in progress, and a smart factory is being built using ICT and IoT technologies. In order to organically solve many problems occurring in the smart factory, a system for monitoring the wireless communication function between facilities and devices and the manufacturing process environment of the smart factory is required. In this paper, we propose a monitoring system using a Bluetooth module, a temperature/humidity sensor and a fine dust sensor to remotely monitor the process environment of a smart factory. The proposed monitoring system collect Arduino sensor values wirelessly through Bluetooth communication.

  • PDF

Characteristics of Temperature, Humidity and PPF Distribution by Covering Method and Environmental Control in Double Covering Greenhouse (이중피복 온실의 피복방법과 환경조절에 따른 온습도 및 광합성유효광량자속 분포 특성)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The objective of the present study is to provide data needed to find double covering method to be able to improve environment of temperature, humidity and PPF in tomato greenhouse. The distribution charts of temperature, humidity and PPF which were measured in environment control conditions such as thermal insulation, air heating, roof ventilation and air fog cooling in conventional and air inflated double layers greenhouses were drawn and analysed. The thermal insulation effect of the air inflated greenhouse was the same as that of conventional greenhouse because the temperature between insulation curtain and roof covering material was equal in heating season. The ventilation effect of the air inflated greenhouse was superior to the conventional greenhouse. The temperature distribution in the fog cooled greenhouse was uniform and the cooling effect was about $3.5^{\circ}C$. The condensation on the roof covering surface could be controlled by removing the moisture between insulation curtain and roof covering by using humidifier. The PPF of conventional greenhouse was more decreased than the air inflated greenhouse as time went by because the transmittance of conventional greenhouse declined by dust collected on the inside plastic film owing to rolling up and down operation for ventilation.