• 제목/요약/키워드: 온라인 고난도 예 마이닝

검색결과 1건 처리시간 0.013초

단-단계 물체 탐지기 학습을 위한 고난도 예들의 온라인 마이닝 (Online Hard Example Mining for Training One-Stage Object Detectors)

  • 김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권5호
    • /
    • pp.195-204
    • /
    • 2018
  • 본 논문에서는 심층 합성 곱 신경망 모델 기반의 단-단계 물체 탐지기들의 탐지 성능을 향상시킬 수 있는 새로운 손실 함수와 온라인 고난도 예 마이닝 방식을 제안한다. 본 논문에서 제안하는 손실 함수와 온라인 고난도 예 마이닝 방식은 물체와 배경 간의 학습 데이터 불균형 문제를 해결할 뿐만 아니라, 각 물체의 위치 추정 정확도를 더 개선시킬 수 있다. 따라서 물체 탐지 속도가 빠른 단-단계 물체 탐지기들에 이-단계 물체 탐지기들과 비슷하거나 더 우수한 탐지 성능을 제공할 수 있다. PASCAL VOC 2007 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 본 논문에서 제안하는 손실 함수와 온라인 고난도 예 마이닝 방식이 단-단계 물체 탐지기들의 성능 개선에 도움이 된다는 것을 입증해 보인다.