• Title/Summary/Keyword: 온도-비열 모델

Search Result 29, Processing Time 0.02 seconds

A Numerical Study of the Effects of Land Characteristics on the Air Cooling (지표면 특성에 따른 대기 냉각 효과에 관한 수치적 연구)

  • An, Jae-Ho;Kim, Tae-Wan;Lee, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.264-271
    • /
    • 2004
  • A three-dimensional numerical mesoscale model by Pielke's estimation (University of Virginia Mesoscale Model, UVMM) was applied to investigate the effects of land characteristics including land-humidity, land-roughness and land-albedo on some micro-climatic coefficients and the air cooling capacity. The results indicated that land-characteristics exposed a significant effect on air cooling. Air cooling effects between in urban and agricultural areas were compared and the effects were much higher in agricultural area. Air cooling effects of weed species were different and when converted into economic values by diesel oil price the effects were ranged from 411 to 816 Won/plant.

Application of Lumley's Drag Reduction Model to Two-Phase Gas-Particl Flow in a Pipe(II) - Mechanism of Heat Transfer- (고체 분말이 부상하는 2상 난류 수직관 유동에 대한 Lumley의 저항감소 모델의 적용 (II) - 열전달 기구 -)

  • 한기수;정명균;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.214-224
    • /
    • 1990
  • A "two-fluid" model using thermal eddy diffusivity concept and Lumley's drag reduction theory, is proposed to analyze heat transfer of the turbulent dilute gas-particle flow in a vertical pipe with constant wall heat flux. The thermal eddy diffusivity is derived to be a function of the ratio of the heat capacity-density products .rho. over bar $C_{p}$ of the gaseous phase and the particulate phase and also of the ratio of thermal relaxation time scale to that of turbulence. The Lumley's theory dictates the variation of the viscous sublayer thickness depending on the particle loading ratio Z and the relative particle size $d_{p}$/D. At low loading ratio, the size of viscous sublayer thickness is important for suspension heat transfer, while at higher loading, the effect of the ratio .rho. $_{p}$ over bar $C_{p}$$_{p}$/ .rho. $_{f}$ over bar $C_{p}$$_{f}$ is dominant. The major cause of decrease in the suspension Nusselt number at lower loading ratio is found to be due to the increase of the viscous sublayer thickness caused by the suppression of turbulence near the wall by the presence of solid particles. Predicted Nusselt numbers using the present model are in satisfactory agreements with available experimental data both in pipe entrance and the fully developed regions.

Studies on the Freezing Time Prediction and Factors Influencing Freezing Time Prediction (식품의 동결시간 예측 및 동결시간에 영향을 미치는 요인에 관한 연구)

  • Kong, Jai-Yul;Jeong, Jin-Woong;Kim, Min-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.827-833
    • /
    • 1988
  • The objectives of this investigation were to develop an improved analytical method and to review with respect to experimental parameters and thermo-physical properties influencing the freezing time prediction. The results indicate that the relationship between freezing time and product size is dependent on the surface heat transfer coefficient. As the magnitude of surface heat transfer coefficient decreases, the influence of product size on freezing time becomes more profound. But the freezing time does decrease slightly as the coefficients are increased to values greater than 150 $w/m^2^{\circ}C$. In addition, influence of thermo-physical properties on the freezing time prediction shown generally density, water content, specific heat and thermal conductivity, in order of % difference. Multiple linear regression equation for freezing time prediction were obtained with respect to 4 different food materials with varying thickness.

  • PDF

Computer Simulation for the Thermal Analysis of the Energy Storage Board (에너지 축열보드 열해석을 위한 컴퓨터 수치해석)

  • 강용혁;엄태인;곽희열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.224-232
    • /
    • 1999
  • Latent heat storage system using micro-encapsuled phase change material is effective method for floor heating of house and building. The temperature profile in capsule block and flow rate of hot water are important parameters for the development of heat storage system. In the present study, a mathematical model based on 3-D, non-steady state, Navier-Stokes equations, scalar conservation equations and turbulence model ($\kappa$-$\varepsilon$), is used to predict the temperature profiles in capsule and the velocity vectors in hot water pipe. The multi-block grids and fine grids embedding are used to join the circle in hot water pipe and square in capsule block. The phase change process of the capsule is quite complex not only because the size of phase change material is very small, but also because phase change material is mixed with the cement to form thermal storage block. In calculation, it's assumed that the phenomena of phase change is limited only the thermal properties of phase change material and the change of boundary is not happened in capsule. The purpose of this study is to calculate the temperature profiles in capsule block and velocity vectors in hot water pipe using the numerical calculation. Two kinds of thermal boundary condition were considered, the first (case 1) is the adiabatic condition for the both outside surfaces of the wall, the second (case 2) is the case in which one surface is natural convection with atmosphere and another surface is adaibatic. Calculation results are shown that the temperature profile in capsule block for case 1 is higher than that for case 2 due to less heat loss in adaibatic surface. Specially, in the domain of near Y=0, the difference of temperature is greater in case 1 than in case 2. The detailed experimental data of capsule block on the temperature profile and the thermal properties such as specific heat and coefficient of heat transfer with the various temperature are required to predict more exact phenomena of heat transfer.

  • PDF

Numerical Simulation of Standing Column Well Ground Heat Pump System Part II: Parametric Study for Evaluation of the Performance of Standing Column Well (단일심정 지열히트펌프의 수치적 모델링 Part II: 단일심정 지열히트펌프의 성능평가를 위한 매개변수 연구)

  • Park, Du-Hee;Kim, Kwang-Kyun;Kwak, Dong-Yeop;Chang, Jae-Hoon;Na, Sang-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.45-54
    • /
    • 2010
  • The SCW numerical model described in the companion paper was used to carry out a comprehensive parametric study to evaluate the performance of the SCW. The five ground related parameters, which are porosity, hydraulic conductivity, thermal conductivity, specific heat, geothermal gradient, and five SCW design parameters, which are pumping rate, well depth, well diameter, dip tube diameter, bleeding rate, were used in the study. Two types of numerical simulations were performed. The first type was used to perform short-term (24-hour) simulation, while the second type 14 day simulation. The study results indicate that the parameters that have important influence on the performance of SCW were hydraulic conductivity, thermal conductivity, geothermal gradient, pumping rate, and bleeding rate. The thermal conductivity had the most important influence on the performance of the SCW. With the increase in the geothermal gradient, the performance increased in the heat mode, but decreased in the cooling mode. The hydraulic conductivity influenced the performance when the value was larger than $10^{-4}m/s$. The depth of the well increased the performance, but at the cost of increased cost of boring. The bleeding had an important influence on SCW, greatly enhancing the performance at a limited increased cost of operation. Overall, this study showed that various factors had a cumulative influence on the performance of the SCW, and a numerical simulation can be used to accurately predict the performance of the SCW.

The Preliminary Design of Stirling Engines Considering the Regenerator Effectiveness (재생기효율을 고려한 스터링기관의 예비설계)

  • 유호선;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1356-1364
    • /
    • 1990
  • This paper deals with the preliminary design conditions of Stirling Engines based on an adiabatic analysis with regenerator effectiveness. The investigation of thermal regeneration process results that the definition of effectiveness proposed by Urieli et al. is appropriate for the present model. Then, it is applied to the already existing approximate analytic solution for the adiabatic model in order to optimize thermal efficiency as well as work parameter. Results show that thermal efficiency is less sensitive to the variation in design parameters than work. Phase angle for the maximum work is also the most efficient at high values of the effectiveness. Swept volume ratio should be chosen with care. The optimum value of dead volume ratio is at least less than the maximum efficiency condition. The feasible design range in compression ratio lies between the maximum efficiency condition and the structural limit of Stilring Engines, where the higher its value, the better. Changes in the temperature ratio do not alter the design conditions. Working fluids with the specific heat ratio 1.67 are more efficient that those with 1.4.

A Numerical and Experimental Study for Fry-drying of Various Sludge (슬러지 유중 건조에 대한 전산 해석 및 실험적 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Kim, Byeong-Gap;Hwang, Min-Jeong;Jang, Dong-Soon;Ohm, Tae-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.341-348
    • /
    • 2010
  • The basic principle of fry drying process of sludge lies in the rapid pressure change of sludge material caused by the change of temperature between oil and moisture due to the difference of specific heat. Therefore, the rapid increase of pressure in drying sludge induces the efficient moisture escape through sludge pores toward heating oil media. The object of this study is to carry out a systematic investigation of the influence of various parameters associated with the sludge fry drying processes on the drying efficiency. To this end, a series of parametric experimental investigation has been made together with the numerical calculation in order to obtain typical drying curves as function of important parameters such as drying temperature, sludge diameter, oil type and sludge type. In the aspect of frying temperature, especially it is found that the operation higher than $140^{\circ}C$ was favorable in drying efficiency regardless of type of waste oil employed in this study. The same result was also noted consistently in the investigation of numerical calculation, that is, in that the sludge particle drying was efficiently made over $140^{\circ}C$ irrespective of the change of particle diameter. As expected, in general, the decrease of diameter in sludge was found efficient both experiment and numerical calculation in drying due to the increased surface area per unit volume. In the investigation of oil type and property, the effect of the viscosity of waste oil was found to be more influential in drying performance. In particular, when the oil with high viscosity, a visible time delay was noticed in moisture evaporation especially in the early stage of drying. However, the effect of high viscosity decreased significantly over the temperature of $140^{\circ}C$. There was no visible difference observed in the study of sludge type but the sewage sludge with a slightly better efficiency. The numerical study is considered to be a quite useful tool to assist in experiment with more detailed empirical modeling as further work.

A Numerical Study for Effective Operation of MSW Incinerator for Waste of High Heating Value by the Addition of Moisture Air (함습공기를 이용한 고발열량 도시폐기물 소각로의 효율적 운전을 위한 수치 해석적 연구)

  • Shin, Mi-Soo;Shin, Na-Ra;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.115-123
    • /
    • 2013
  • Stoker type incinerator is one of the most popular one used as municipal solid waste (MSW) incineration because, in general, it is quite suitable for large capacity and need no preprocessing facility. Nowadays, however, since the combustible portion of incoming MSW increases together with the decrease of the moisture content due to prohibition of directly burying food waste in landfill, the heating value of waste is remarkably increasing in comparison with the early stage of incinerator installation. Consequently, the increased heating value in incinerator operation causes a number of serious problems such as reduction of waste amount to be burned due to the boiler heat capacity together with the significant NO generation in high temperature environment. Therefore, in this study, a series of numerical simulation have been made as parameters of waste amount and the fraction of moisture in air stream in order to investigate optimal operating condition for the resolution of the problems associated with the high heating value of waste mentioned above. In specific, a detailed turbulent reaction flow field calculation with NO model was made for the full scale incinerator of D city. To this end, the injection method of moisturized air as oxidizer was intensively reviewed by the addition of moisture water amount from 10% and 20%. The calculation result, in general, showed that the reduction of maximum flame temperature appears consistently due to the combined effects of the increased specific heat of combustion air and vaporization heat by the addition of water moisture. As a consequence, the generation of NOx concentration was substantially reduced. Further, for the case of 20% moisture amount stream, the afterburner region is quite appropriate in temperature range for the operation of SNCR. This suggests the SNCR facility can be considered for reoperation. which is not in service at all due to the increased heating value of MSW.

Immuno-stimulatory Activities of a High Molecular Weight Fraction from Cynanchum wilfordii Radix Obtained by Ultrafiltration (한외거르기(Ultrafiltration)에 의하여 분리된 백수오 고분자 분획물의 면역증진 활성)

  • Jang, Mi;Lim, Tae-Gyu;Hong, Hee-Do;Rhee, Young Kyoung;Kim, Kyung-Tack;Lee, Eunjung;Lee, Jeong Hoon;Lee, Yun Ji;Kim, Yeon Bok;Cho, Chang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.268-274
    • /
    • 2016
  • The purpose of this study was to investigate the immuno-stimulatory activity of the high-molecular-weight fraction (HMWF) of Cynanchum wilfordii (CW) extracts obtained by ultrafiltration in murine macrophage RAW 264.7 cells and to assess its immuno-stimulatory effect in mice. Ultrafiltration was performed with polyethersulfone membranes (30 kDa cutoff) in a cross-flow filtration system to obtain the HMWF of CW. The results showed that the HMWF increased the production of various cytokines such as tumor necrosis factor-${\alpha}$, interleukin-6, and nitric oxide in dose-ependent manners. In addition, HMWF treatment increased the relative spleen weight as well as splenocyte proliferation induced by concanavalin A or bacterial lipopolysaccharide in mice. Natural killer (NK) cell activity in the HMWF-treated group was significantly increased compared to that in the control group. These results suggest that the HMWF of CW can support the immune system through secretion of macrophage cytokines, thereby enhancing NK cell activity and murine splenocyte proliferation.