• Title/Summary/Keyword: 온도 영향

Search Result 12,963, Processing Time 0.035 seconds

Microscopic Influence of Temperature on Carbonation for Marine Concrete Structure (항만콘크리트 구조물의 탄산화에 미치는 온도의 미세구조적 영향)

  • Han, Sang-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.272-278
    • /
    • 2010
  • Some recent researches reported that high temperature rising decreases the carbonation depth of concrete, which is contrary to the previous research results. Carbonation has been known as a reaction between calcium hydroxide and carbon dioxide. But a few researches showed that the other cement hydrates as well as calcium hydroxide react with carbon dioxide. This paper investigates the influence of temperature on carbonation and the variation of $Ca(OH)_2$ and $CaCO_3$ by carbonation. In order to estimate the carbonation depth and the quantities of reactant and product of carbonation reaction, phenolphthalein testing and thermagravimetric analyzer test were conducted. The measurement of carbonation depth with temperature showed that the temperature increase from $20^{\circ}C$ to $30^{\circ}C$C in carbonation environment makes the carbonation depth larger, but the increase from $30^{\circ}C$ to $40^{\circ}C$ has a small influence on the carbonation depth. Comparing calcium hydroxide and calcium carbonate with temperature, the quantity of $CaCO_3$ of specimen carbonated at $30^{\circ}C$ is greater than that of specimen carbonated at $40^{\circ}C$ and the quantity of $Ca(OH)_2$ of specimen carbonated at $30^{\circ}C$ is similar to that of specimen carbonated at $40^{\circ}C$. This observation shows that there is the optimum temperature increasing carbonation depth and the optimum temperature is close to $30^{\circ}C$.

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.118-125
    • /
    • 2002
  • Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.

Analysis of the Bioheat Equation Considering Tissue Layers with Sinusoidal Temperature Oscillation on the Skin (사인 주기의 온도 변화가 가해지는 피부 조직의 생체열 방정식에 대한 해석)

  • Choi, Woo-Lim;Moon, Sang-Don;Youn, Suk-Bum;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.757-762
    • /
    • 2011
  • We investigate the transient temperature response in biological tissue whose surface is exposed to alternately varying sinusoidal oscillation. Based on the Pennes bio-heat equation, we apply numerical analysis using a finite element method to find the effects of the physical properties of the skin layers. Three layers of tissue-epidermis, dermis, and subcutaneous-are considered as the solution region. We investigate the effects of different properties of the skin layers on the temperature profile. We also investigate the effects of the perfusion rate for the dermis, which is the most sensitive layer. The results show that the temperature profile of tissue depth has a discontinuous point when different physical properties are used.

Effects of Crud on reflood heat transfer in Nuclear Power Plant (핵연료 크러드가 원전 재관수 열전달에 미치는 영향)

  • Yoo, Jin;Kim, Byoung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.554-560
    • /
    • 2021
  • CRUD (chalk river unidentified deposits) is a porous material deposited on the surface of nuclear fuel during nuclear power plant operation. The CRUD is composed of metal oxides, such as iron, nickel, and chromium. It is essential to investigate the effects of the CRUD layer on the wall heat transfer between the nuclear fuel surface and the coolant in the event of a nuclear accident. CRUD only negatively affects the temperature of the nuclear fuel due to heat resistance because the effects of the CRUD layer on two-phase boiling heat transfer are not considered. In this study, the physical property models for the porous CRUD layer were developed and implemented into the SPACE code. The effects of boiling heat transfer models on the peak cladding temperature and quenching were investigated by simulating a reflood experiment. The calculation results showed some positive effects of the CRUD layer.

형상기억합금의 결정구조가 인장특성에 미치는 영향 연구

  • 여동진;윤성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.93-93
    • /
    • 2004
  • 형상기억합금은 2원 또는 3원 합금에 의해 외력과 온도 변화에 따라 오스테나이트 상과 마르텐사이트 상으로의 상변환을 유발한다. 이와 같은 형상기억합금은 두 가지의 고유한 특성으로 인해 최근에는 의학용 기구나 소형 액츄에이트 및 여러 분야에서 적용되어지고 있다. 이때 형상기억합금의 고유한 특성은 모상인 오스테나이트 상의 형상을 기억하여 외력에 의해 마르텐사이트 상으로 변형된 후에도 오스테나이트 종료온도 이상으로 가열하게 되면 원래의 형상으로 되돌아가는 형상기억 효과와 오스테나이트 종료온도 이상에서 넓은 탄성 영역을 가지는 초탄성 효과 등이다.(중략)

  • PDF

Effect of Temperature on Joint Movement of JPCP at Its Early Age (재령초기 콘크리트포장 줄눈거동에 미치는 온도의 영향)

  • Choi, Ki-Hyo;Jeong, Jin-Hoon;Chun, Sung-Han;Park, Moon-Gil
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.340-343
    • /
    • 2007
  • The temperature variation of concrete pavement at early-age significantly affects the initiation and movement of joint cracks. For this analysis, we have built on IIA(Incheon International Airport) concrete pavement construction zone, and we measured the temperature and movement of the concrete slabs by using thermocouples, moisture sensors, V/W strain gages, and Demac discs. The analysis results showed that pavement's temperature significantly affected the joint movement. The widths of the joint cracks increased at evening and early in the morning when the temperature dropped but, those decreased in the day time when the temperature rose because of the effect of thermal expansion of the concrete slabs. The movements of the joints where the cracks never developed showed opposite trend to the cracked joints.

  • PDF

Modelling of Drying Shrinkage for Different Environmental Conditions (환경인자를 고려한 건조수축의 예측모델 개발)

  • 한만엽
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.1
    • /
    • pp.111-120
    • /
    • 1996
  • Drying shrinkage is a very important properties of concrete, which is affected by environmental conditions. The environmental conditions are temperature, relative humidity, and wind speed, which is quite variable and its effct on drying shrinkage is quite complex, too. In this study, environmental effects on drying shrinkage wrer integrated into one variable-evaporation rate. In several different environmental conditions, evaporation rate was measured with Evaporometer and compared with PCA chart, and also compared with measured drying shirnkage to verify the possibility of being a single parameter. The results are summarized in a prediction chart and prediction equation for drying shrinkage.

Effects of Tempering Temperature and Time on the Slip Melting Point of Fats (처리 온도 및 시간이 고형 유지의 상승 융점에 미치는 영향)

  • Yi, Young-Soo;Chang, Young-Sang;Shin, Zae-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.19-24
    • /
    • 1991
  • Among the conditions changes for the slip melting point of tempering temperature and time were studied. The results were treated below at $4^{\circ}C$, slip M.P. were not effected by tempering time. But slip M.P. of lard and palm oil had fallen treated at $10^{\circ}C$, the reason was that low melting triglycerides did not form the perfect crystals. Therefore, in order to measure the slip M.P. should be decrease the free energy and from stable crystallization of fats. Recommendable tempering temperature was treated at $4^{\circ}C$.

  • PDF

Factors Affecting Shelf-life of Washed Shell Eggs (세척란의 저장성에 영향을 미치는 요인)

  • 전기흥;박영신;유익종
    • Korean Journal of Poultry Science
    • /
    • v.20 no.1
    • /
    • pp.33-41
    • /
    • 1993
  • Among the several factors that affect shelf-life of washed shell eggs, storage temperature and relative humidity were the most important. Besides those factors listed above, temperature of washing water, composition of foreign substances and washing method of eggs were also the factors affecting the shelf-life of the eggs. The effect of sanitizer treatment was significant in extending the shelf-life of eggs compared with washed and unwashed eggs. In case of oil coating treatment, the shell eggs treated showed the better results than that of washed and unwashed eggs because the coating materials prevented the moisture evaporation from the inner shell eggs and kept the contamination of microorganisms from the environment. Consequently, it is considered that reducing egg shell contamination of microorganisms and proper treatment could be the key to extend the shelf-life of shell eggs.

  • PDF

Optimization of thermal network of compact fuel processor for PEMFCs using Aspen plus simlation (Aspen plus 전산모사를 통한 연료전지용 컴팩트 연료개질기 열교환망 최적화)

  • Jung, Un-Ho;Koo, Kee-Young;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.207-207
    • /
    • 2009
  • Aspen plus는 Aspentech사에서 개발한 공정모사용 프로그램으로서 다양한 화학종의 열역학적 자료를 기반으로 공정설계, 공정최적화, 공정모니터링 등 공정개발에 활용되고 있다. 연료개질기는 수증기 개질반응, 수성가스전이반응, 선택적화학반응으로 구성된 소규모 수소생산공정에 해당된다. 따라서 Aspen 전산모사를 통해 다양한 조건에서의 운전결과를 모사하여 개질기에 미치는 영향을 분석함으로써 운전조건을 최적화 할 수 있다. 연료개질기의 성능에 영향을 미치는 주요인자는 주로 수증기개질 촉매층 출구온도 및 수증기/탄소 비이다. 수증기개질 촉매층의 출구온도를 $660{\sim}740^{\circ}C$로 변화시키면서 개질가스의 조성, 카본 전환율, 개질효율 등을 비교 분석하였다. 또한 수증기/탄소 비를 3~5의 범위에서 변화시키면서 영향을 살펴보았다. 수증기개질 촉매층의 온도가 높을수록 수소생산량이 증가에 따른 효율 증가가 나타났으며 수증기/탄소 비가 증가할 경우에도 개질효율에 긍정적인 영향을 미치는 것을 확인하였다. 하지만 실제 개질기의 운전에서는 소재의 제약에 따라 운전 온도에 제약이 있으며 수증기/탄소비의 증가 역시 개질기의 부피 증가로 이어지는 단점이 있다는 것을 고려해야 한다. 따라서 반응기 재질, 크기, 운전온도와 개질효율과의 상관관계를 파악하여 개질기의 특성을 최적화 하여야 한다.

  • PDF