• Title/Summary/Keyword: 온도에 따른 상전이

Search Result 123, Processing Time 0.018 seconds

Ferroelectric properties of $Y_2O_3$ and $MnO_2$ doped $SrBi_2Nb_2O_9$ ceramics ($Y_2O_3$$MnO_2$를 첨가한 $SrBi_2Nb_2O_9$ 세라믹스의 강유전 특성)

  • Suk, Jong-Min;Lee, Yong-Hyun;Noh, Jong-Ho;Cho, Jeong-Ho;Chun, Myoung-Pyo;Kim, Byung-Ik;Ko, Tae-Gyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.346-347
    • /
    • 2006
  • 기계적 품질계수(Qm)를 향상시키기 위해 $Y_2O_3$$MnO_2$를 첨가함에 따른 $SrBi_2Nb_2O_9$ 세라믹스의 강유전 특성을 알아보았다. 합성분말의 입도를 분석 한 결과 $SrBi_2Nb_2O_9$의 경우 781.27nm였고, $Y_2O_3$$MnO_2$를 첨가한 경우 각 각 830.4nm와 981.1nm로 particle size는 증가하였고, 소결 후 소결밀도는 차이가 거의 없었으며, grain size는 $SrBi_2Nb_2O_9$$Y_2O_3$를 첨가했을 경우 $1{\mu}m$이하이며 반면, $MnO_2$를 첨가하였을 때 결정립이 성장하여 $3{\sim}4{\mu}m$로 나타났다. 또한, 모두가 $450^{\circ}C$ 이상의 상전이온도를 갖았다.

  • PDF

Effects of heat treatment on the load-deflection properties of nickel-titanium wire (니켈-티타늄 와이어의 열처리에 따른 부하-변위 특성 변화)

  • Chang, Soo-Ho;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.36 no.5
    • /
    • pp.349-359
    • /
    • 2006
  • Objective: Nickel-titanium alloy wire possesses excellent spring-back properties, shape memory and super-elasticity. In order to adapt this wire to clinical use, it is necessary to bend as well as to control its super-elastic force. The purpose of this study is to evaluate the effects of heat treatment on the load-deflection properties and transitional temperature range (TTR) of nickel-titanium wires. Methods: Nickel-titanium wires of different diameters ($0.016"\;{\times}\;0.022"$, $0.018"\;{\times}\;0.025"$ and $0.0215"\;{\times}\;0.028"$) were used. The samples were divided into 4 groups as follows: group 4, posterior segment of archwire (24 mm) without heat treatment; group 2, posterior segment of archwire (24 mm) with heat treatment only; group 3, anterior segment with bending and heat treatment; group 4, anterior segment with bending and 1 sec over heat treatment. Three point bending test was used to evaluate the change in load-deflection curve and obtained DSC (different scanning calorimetry) to check changes in $A_f$ temperature. Results: In the three point bending test, nickel-titanium wires with heat treatment only had higher load-deflection curve and loading and unloading plateau than nickel-titanium wires without heat treatment. Nickel-titanium wires with heat treatment had lower Af temperature than nickel-titanium wires without heat treatment. Nickel-titanium wires with heat treatment and bending had higher load-deflection curve than nickel- titanium wires with heat treatment and nickel-titanium wires without heat treatment. Nickel-titanium with heat treatment of over 1 sec and bending had the highest load-deflection curve. Nickel-titanium wires with heat treatment and bending had lower Af temperature, Nickel-titanium wires with heat treatment of over Af sec and bending had the lowest Af temperature. Conclusion: From the results of this study, it can be stated that heat treatment for bending of Nickel-titanium wires does not deprive the superelastic property but can cause increased force magnitude due to a higher load-deflection curve.

Microwave Dielectric Properties and Multilayer Characteristics of (1-x)BiNbO4-xCaNb2O6 Ceramics ((1-x)BiNbO4-xCaNb2O6 세라믹스의 마이크파 유전특성 및 적층체 특성)

  • Kim, Eung-Soo;Choi, Woong;Kim, Jong-Dae;Kang, Seung-Gu;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1190-1196
    • /
    • 2002
  • Microwave dielectric properties and multilayer characteristics $(1-x)BiNbO_4-xCaNb_2O_6$ (0${\le}$x${\le}$1.0) ceramics were investigated as a function of $CaNb_2O_6$ content. In the composition range of 0.25${\le}$x${\le}$0.75, the mixture phases of $BiNbO_4$ with stibotantalate structure and $CaNb_2O_6$ with columbite structure were detected and secondary phase or phase transition were not detected. Dielectric constant (K) of $(1-x)BiNbO_4-xCaNb_2O_6$ ceramics was largely dependent on the existing phase and could be estimated by the dielectric mixing rule calculated from maxwell equation. Typically, dielectric constant (K) of 26, quality factor (Qf) of 4300 GHz and Temperature Coefficient of resonant Frequency (TCF) of -18 ppm/${\circ}C$ were obtained for $0.5BiNbO_4-0.5CaNb_2O_6$ specimens with 0.8 wt% $CuV_2O_6$ sintered at 1000${\circ}C$ for 3h. The deviation of X-Y shrinkage and camber value of the multilayers obtained from $0.5BiNbO_4-0.5CaNb_2O_6$ green sheet sintered at 850∼950${\circ}C$ for 20 min. were smaller than those of $BiNbO_4$ multilayers.