• Title/Summary/Keyword: 온도감지 센서

Search Result 353, Processing Time 0.023 seconds

Music Recommendation System in Public Space, DJ Robot, based on Context-awareness and Musical Properties (상황인식 및 음원 속성에 따른 공간 설치형 음악 추천 시스템, DJ로봇)

  • Kim, Byung-O;Han, Dong-Soong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.286-296
    • /
    • 2010
  • The study of the development of DJ robots is to meet the demands of the music services which are changing very rapidly in the digital and network era. Existing studies, as a whole, develop music services on the premise of personalized environment and equipment, but the DJ robot is on the premise of the open space shared by the public. DJ robot gives priority to traditional space and music. Recently as the hospitality and demand for cultural contents of South Korea expand to worldwide, industrial use of the contents based on traditional or our unique characteristics is getting more and more. Meanwhile, the DJ robot is composed of a combination of two modules. One is to detect changes in the external environment and the other is to set the properties of the music by psychology, emotional engineering, etc. DJ robot detect the footprint of the temperature, humidity, illumination, wind, noise and other environmental factors measured, and will ensure the objectivity of the music source by repeated experiments and verification with human sensibility ergonomics based on Hevner Adjective Circle. DJ robot will change the soundscape of the traditional space being more beautiful and make the revival and prosperity of traditional music with the use of traditional music through BGM.

The Risk Assessment of Carbon Monoxide Poisoning by Gas Boiler Exhaust System and Development of Fundamental Preventive Technology (가스보일러 CO중독 위험성 예측 및 근원적 예방기술 개발)

  • Park, Chan Il;Yoo, Kee-Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.27-38
    • /
    • 2021
  • We devised the system to automatically shutdown the boiler and to fundamentally block the harmful gases, including carbon monoxide, into the indoor when the exhaust system swerves: (1) The discharge pressure of the exhaust gas decreases when the exhaust pipe is disconnected. The monitoring system of the exhaust pipe is implemented by measuring the output voltage of APS(Air Pressure Sensor) installed to control the amount of combustion air. (2) The operating software was modified so that when the system recognizes the fault condition of a flue pipe, the boiler control unit displays the fault status on the indoor regulator while shutting down the boiler. In accordance with the ventilation facility standards in the "Rules for Building Equipment Standards" by the Ministry of Land, Infrastructure and Transport, experiments were conducted to ventilate indoor air. When carbon monoxide leaked in worst-case scenario, it was possible to prevent poisoning accidents. However, since 2013, the number of indoor air exchange times has been mitigated from 0.7 to 0.5 times per hour. We observed the concentration exceeding TWA 30 ppm occasionally and thus recommend to reinforce this criterion. In conclusion, if the flue pipe fault detection and the indoor air ventilation system are introduced, carbon monoxide poisoning accidents are expected to decrease significantly. Also when the manufacturing and inspection steps, the correct installation and repair are supplemented with the user's attention in missing flue, it will be served to prevent human casualties from carbon monoxide poisoning.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.