• 제목/요약/키워드: 온간가공

검색결과 119건 처리시간 0.02초

AZ31 합금의 온간 부풀림 성형시 결정립 변화에 관한 연구 (Grain Evolution during Bulge Blow forming of AZ31 Alloy)

  • 백성규;이영선;이정환;권용남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.452-455
    • /
    • 2008
  • In the present study, blow forming characteristics of commercially roiled AZ31 alloy sheets were investigated. Two different kinds of AZ31 sheets were originally fabricated by using direct casting and strip casting methods respectively. Both sheets have similar grain sizes of about $7{\mu}m$ with a relatively equiaxed structure after rolling. A series of tensile tests were carried out to get flow behavior in terms of temperature and strain rate. Also, grain size effect was investigated by annealing as-received sheet at elevated temperatures. Elongation increased with temperature increment as well expected. However, the differences in tensile test condition did not give much difference in elongation even at the temperature range where a large elongation would be expected with such as fine grain of $7{\mu}m$. Blow forming experiments showed that forming condition did not result in higher difference in dome height. However, the interesting feature from this study was that formability of this AZ31 alloy got different with stress condition. Firstly, biaxial stress condition might result in lower temperature and strain rate dependencies compared to uniaxial tension results for both DC and SC sheets. Secondly, DC showed slower grain growth in uniaxial tension than in biaxial stress state while SC has much higher grain growth rage in uniaxial tension than in bulging.

  • PDF

변형률속도 효과를 고려한 AZ31B 판재의 온간 성형한계도 예측 - II (Prediction of the Forming Limit Diagram for AZ31B Sheet at Elevated Temperatures Considering the Strain-rate Effect - II)

  • 최선철;김헌영;김형종
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.285-288
    • /
    • 2009
  • The purpose of this study is to predict the forming limit diagram (FLD) of strain-rate sensitive materials on the basis of the Marciniak and Kuczynski (M-K) theory. The strain-rate effect is taken into consideration in such a way that the stress-strain curves for various strain-rates are inputted into the formulation as point data, not as curve-fitted models such as power function. Tensile tests and R-value tests were carried out at several levels of temperature and strain-rate from $25^{\circ}C$ to $300^{\circ}C$ and 0.16 to 0.00016/s, respectively to obtain the mechanical properties of AZ31B magnesium alloy sheet. The FLD of this material was experimentally obtained by limit dome height tests with the punch velocity of 0.1 and 1.0 mm/s at $250^{\circ}C$. The M-K theory-based FLD predicted using Yld2000-2d yield criterion was compared with the experimental results.

  • PDF

마그네슘 합금 판재의 온간 성형 해석에서 FLD를 이용한 성형성 평가 (Evaluation of the Formability of Warm Forming Simulation of Magnesium Alloy Sheet Using FLD)

  • 이명한;김흥규;김헌영;오수익
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.501-506
    • /
    • 2008
  • In this study, a forming magnesium alloy circular cup was simulated accounting for heat transfer at elevated temperatures. In order to predict the failure of magnesium alloy sheet during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. For the failure prediction in the simulation accounting for heat transfer, the forming limit diagram for a temperature the same as the temperature of the blank element was used. The result of the simulation showed that the drawn depth increases with the increase of the die-holder temperature, and is in accord with the experimental results above the die-holder temperature of $150^{\circ}C$. The forming limit diagram provided a good guide for the failure prediction of warm forming simulation accounting for heat transfer. In addition, the effect of the tool shoulder radius on the drawn depth at various tool temperatures is verified using the simulation conditions which agreed with the experimental results.

액슬하우징의 온간 후판단조에서 굽힘 변형된 모서리에서 발생하는 두께 감소 방지를 위하여 고안된 금형 시스템 (Die System for Avoiding Thickness Reduction along the Bent Corner in Warm Plate Forging of an Axle Housing)

  • 김장섭;김기수;심상현;엄재근;전만수
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.447-451
    • /
    • 2010
  • In this paper, a useful die system for warm plate forging of a large axle housing of heavy-duty trucks is presented. A die system composed of material flow guide pin as well as upper die and lower die is proposed to reduce the inherent thickness reduction along the bent corner of the product which deteriorates structural strength and fatigue life in its service. The role of the pin assembled in the upper die is to prevent formation of sharp corner in early forming stage and to supply material in the lower die cavity sufficient enough to thicken the bent corner at the final stroke. The mechanism of the die system is given and its effect on corner thickness of the product is revealed by two-dimensional finite element analysis under plain strain assumption. Three-dimensional finite element solutions are also given to verify validity of the two dimensional approach and to show the mechanics of the die system in detail. The die system has been successfully applied to manufacturing the axle housing of heavy-duty trucks.

원형 클래드 판재를 이용한 정사각컵 온간 디프 드로잉성 비교 (Comparision of Warm Deep Drawability of Square Cups Using Circular Clad Sheet Metals)

  • 류호연;김영은;김종호;정완진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.89-93
    • /
    • 2001
  • This study was carried out to investigate the warm deep drawability of square cups of clad sheet metals, by changing temperatures of die and blankholder and blank materials. Two kinds of clad sheet metals, STS304-A1050-STS304 and STS304-A1050-STS430 were chosen for experiments. The relative drawing depth of STS304-A1050-STS304 clad sheet was increased up to 4.4 at $150^{\circ}C$ that was $29\%$ higher than at room temperature, whereas STS304-A1050-STS430 material was improved to 3.65 at $120^{\circ}C$ which was $16\%$ better than at room temperature. In addition, comparison of wall thickness and hardness of a warm drawn cup with those of room temperature showed more even distributions. Therefore, warm forming technique was confirmed to ive better results in deep drawing of stainless clad sheet metal.

  • PDF

AZ31B 마그네슘판재의 온간, 열간 딮드로잉 성형성 평가 (The Drawbility Estimation in warm and Hot Forming of AB31B Magnesium Sheet)

  • 추동균;오세웅;이준희;강충길
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.628-634
    • /
    • 2005
  • The drawability of AZ31B magnesium sheet is estimated at various temperatures (200, 250, 300, 350, $400^{\circ}C$), forming speeds (20, 50, 100mm/min), thicknesses (0.8, 1.4mm) and blank holding forces (2.0, 2.8, 3.4kN). The deep drawing process (DDP) of circular cup is used in forming experiments. The results of deep drawing experiments show that the drawability is well at the range from 250 to $300^{\circ}C$, 50mm/min forming speed and 2.0kN blank holding force. The 0.8mm magnesium sheets were deformed better than 1.4 mm. Blank holding force was controlled in order to improve drawability and prevent the change of cup thickness. When blank holding force was controlled, tearing and thickness change were decreased and limit drawing ratio was improved from 2.1 to 3.0.

고체 윤활제를 사용한 마그네슘 합금 AZ31 판재 온간 디프 드로잉의 성형성 평가 (Evaluation of Warm Deep Drawability of Magnesium Alloy AZ31 Sheet Using Solid-Type Lubricants)

  • 김흥규;김종덕
    • 소성∙가공
    • /
    • 제15권6호
    • /
    • pp.453-458
    • /
    • 2006
  • While the die casting has been mainly used to manufacture the magnesium alloy parts, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. Because the magnesium alloy has low formability at room temperature, forming at elevated temperatures is a necessary condition to obtain the required material flow for press forming. However, the elevated temperature forming does not always guarantee the sufficient formability under the dry friction condition because the surface damage such as scratch or wear may accelerate the material failure. In the present study, the solid-type lubricants such as PTFE, graphite and $MoS_2$ were tested for the square cup warm deep drawing using the magnesium alloy AZ31 sheet. The formability improvement by using the lubricant was examined by comparing the maximum deep drawing depth using the PTFE against no lubricant. The formability difference for the different lubricant was also examined based on the maximum deep drawing depth.

온간 하이드로포밍에 관한 유한요소해석 및 실험적 검증 (Finite Element Analysis and Experimental Confirmation of Warm Hydroforming Process)

  • 김봉준;박광수;최경호;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.277-280
    • /
    • 2006
  • The hydroformability of aluminum alloy sheets at elevated temperatures have been investigated in this study. It is necessary to analyze the variations of the mechanical properties that depend on the forming temperature and the heat conduction during warm hydroforming. Therefore, in this study a coupled simulation of plastic deformation and temperature distribution in the warm hydroforming process is performed and compared with experimental data. The multi-purpose code DEFORM-2D can handle this type of calculations but it takes high computation time if contact heat transfer between die, tube and pressure medium occurs. Experiments were conducted by high temperature tribometer(pin-on-disk) allowing measuring the friction coefficients of the aluminum alloys at several temperatures and these results are applied to the coupled simulation by which the optimal process parameters such as internal pressure and preset temperature on hydroformability can be determined. The comparison of the FE analysis with the experimental results has shown that hydroformability given by bulge height, and temperature distribution of the tube specimen make a little difference with the FE results but the trend predicted by simulation agrees well with experiments.

  • PDF

온간 하이드로포밍 공정을 위한 시스템 설계 (Process Design for the Tubular Hydroforming at Elevated Temperatures)

  • 김봉준;박광수;손성만;이문용;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.226-229
    • /
    • 2006
  • Process design has been performed for the warm hydroforming of light weight alloy tubes. For the heating of tubes, specially designed induction heating system has been adopted to ensure rapid heating of tubes. The induction heating system uses 30kHz frequency induction coil in order to concentrate the energy in the tube and prevent the energy loss. But the induced heat by the integrated heating system, consisting of induction coil, tube, pressure oil and dies, was normally not equally distributed over the length and circumference of the tube specimen, and consequent temperature distribution was non-uniform. So additional heating element has been inserted into the inside of the tube to maintain the forming temperature and reduce temperature drop due to heat loss to the molds. And for that heat loss, a heat insulation system has also been installed. The drop in flow stress at elevated temperatures results in lower internal pressure for hydroforming and lower clamping forces. The proposed warm hydroforming process has been successfully implemented when applying 6061 aluminum extruded tubes.

  • PDF

알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구(제1부. 실험) (Finite Element Analysis and Experimental Investigation of Non-isothermal Forming Processes for Aluminum-Alloy Sheet Metals. (Part 1. Experiment))

  • 류호연;배원택;김종호;김성민;구본영;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.45-52
    • /
    • 1998
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5052-H32 for improving deep drawability. Experiments for procucing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shape. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5052-H32 sheet, whereas LDR of A1050-H16 is 2.25, could be obtained and the former was 8 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5052-H32 material was also about 2 times deeper than the depth drawn at room temperature. The effects of blank shape, and temperature on drawability of aluminum materials as well as thickness distribution of drawn cups were examined and discussed.

  • PDF