• Title/Summary/Keyword: 옥천화강암

Search Result 94, Processing Time 0.023 seconds

Deformation structures of the Jurassic Ogcheon granite and the Honam Shearing, Ogcheon Area, Korea (옥천지역 쥬라기 옥천화강암의 변형구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2010
  • The Jurassic Daebo Ogcheon granite is distributed in the Ogcheon area which is located in the central part of the Ogcheon Belt, Korea. This paper newly examines the timing of Honam shearing on the basis of the petrofabric researches on the deformation structures of the Ogcheon granite. The structural shape of Ogcheon granite is mainly characterized by a wedge shaped of E-W trend and an elongate shape of ENE trend in geological map and by contacts parallel to the regional S1 foliation in the host Ogcheon supergroup. It indicates that the pluton was permittedly emplaced after the S1 formation. The main deformation structures are marked by a solid-state tectonic foliation of N-S trend, which passes through the contact of the pluton, and by an aplitic dyke of E-W trend, and by sinistral, NW and E-W oriented shear zones on the eastern border of the pluton. The petrofabric study on the main deformation structures suggests that the tectonic foliation and the aplitic dyke were formed by the Honam dextral strike-slip shearing of (N)NE trend at ca. $500{\sim}450^{\circ}C$ deformation temperature, and that the sinistral shear zones could be induced by the dextral rotation of the pluton from its original site of intrusion, that is, by the shear strain which is due to sliding of the pluton past the host rocks. The history of emplacement and deformation of the Ogcheon granite and the previous results on the timing of Honam shearing would be newly established and reviewed as follows. (1) Early~Middle Jurassic(187~170 Ma); intrusion of syntectonic foliated granite related to Early Honam shearing, (2) Middle Jurassic(175~166 Ma); main magmatic period of Jurassic granitoids, the permitted emplacement of the Ogcheon granite, (3) Middle~Late Jurassic(168~152 Ma); main cooling period of Jurassic granitoids, the deformation of the Ogcheon granite related to Late Honam shearing. Thus, this study proposes that the Honam shear movement would occur two times at least during 187~152 Ma (ca. 35 Ma) through the intertectonic phase of 175~166 Ma.

The Contact Metamorphism Due to the Intrusion of the Ogcheon and Boeun granites (옥천화강암과 보은화강암 관입에 의한 접촉변성작용)

  • 오창환;김창숙;박영도
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.133-149
    • /
    • 1997
  • In the metapelites around the Ogcheon granite, the metamorphic grade increases from the biotite zone through the andalusite zone to the sillimanite zone towards the intrusion contact. In the metabasites around the Boeun granite, the metamorphic grade increases from transitional zone between the greenchist and amphibolite facies through the amphibolite facies to the upper amphibolite facies towards the intrusion contact. In the Doiri area locating near the intrusion contact of the Boeun granite, sillimanite- and andalusite-bearing metapelites are found with in 500 m away from the contact. The evidence described above indicates that the Ogcheon and Boeun granites caused low-P/T type contact metamorphism to the country rocks. The P-T condition of contact metamorphism due to the intrusion of the Ogcheon granite is $540{\pm}40^{circ}C, 2.8{\pm}0.9$ kb. The temperature condition of contact metamorphism due to the intrusion of the Boeun granite is $698{\pm}28^{\circ}C$. The wide compositional range of amphibole and plagioclase in the metabasites around the Boeun granite is due to the immisibility gab of amphibole and plagioclase and unstable relict composition resulted from an incomplete metamorphic reaction. The compositional range of stable amphibole and plagioclase decreases as a metamorphic grade increases due to a close of immiscibility gab. The thermal effect of contact metamorphism due to the intrusion of the Ogcheon and Boeun granites, are calculated using the CONTACT2 program based on a two dimensional finite difference method. In order to estimate the thermal effect of an introduced pluton, a circle with 10 km diameter and a triangle with 20 km side are used for the intrusion geometries of the Ogcheon granite and the Boeun granite, respectively. The results from the field and modeling studies suggest that the intrusion temperatures of the Ogcheon granite close to $800^{\circ}C$ and the intrusion temperature of the Boeun granite is higher than $1000^{\circ}C$. However, the intrusion temperatures can be lower than the suggested temperature, if the geothermal gradient prior to the intrusion of the Ogcheon and Boeun granites was higher than the normal continental grothermal gradient.

  • PDF

The crenulation of Ogcheon metasedimentary rocks near the Ogcheon granite and the Honam shearing, Korea (옥천화강암 부근 옥천 변성퇴적암류의 파랑습곡구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.157-165
    • /
    • 2010
  • The age unknown Ogcheon metasedimentary rocks and the Jurassic Ogcheon granite (Jocgr) intruding it are distributed in the Ogcheon area, which is located in the central part of the Ogcheon Belt, Korea, This paper newly examines the timing of Honam shearing on the basis of the microstructural researches on time-relationship between the crenulation of Ogcheon metasedimentary rocks and the contact metamorphism by the intrusion of Jocgr. The D2 crenulation phase, which is defined by the microfolding of the S1 foliation in the metasedimentary rocks, is divided into two sub-phases. The one is a sub-phase of Early crenulation (D2a) which is included within old andalusite porphyroblasts, and the other is that of Late crenulation (D2b) which warps around the old andalusite. But they show the same dextral shear sense, the axial planes parallel to each other, and a single crenulation at outcrop scale. The contact metamorphism of andalusite-sillimanite type by the Jocgr occurred during the inter-phases of D2a and D2b, and crystallized the old andalusite masking the D2a crenulation and fibrous sillimanites replacing the D2a crenulation-forming muscovites. New andalusite porphyroblasts synkinematically grew in pressure shadows around the old andalusite or in its outermost mantles during the early stage of the D2b. The D2b occurred still continuously after the growth of the andalusite ceased (= later stage of the D2b). It indicates that the D2b occurred continuously during the period when the Ogcheon granite was still hot and cool. From this study, the crenulation history of Ogcheon metasedimentary rocks and the timing of Honam shearing would be newly established and reviewed as follows. (1) Early Honam shearing; formative period of Early crenulation, (2) main magmatic period of Jurassic granitoids; growth of the old andalusite and fibrous sillimanite by the intrusion of Jocgr, (3) main cooling period of Jurassic granitoids; formative period of Late crenulation related to Late Honam shearing, growth of the new andalusite in the early stage of D2b. Thus, this study proposes that the Honam shear movement would occur two times at least before and after the intertectonic phase which corresponds to the main magmatic period of Jurassic granitoids.

Geochemical characteristics of Ogcheon granite in Ogcheon area (옥천화강암의 지구화학적 특성)

  • 윤현수;김대업;박석환
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.81-91
    • /
    • 1999
  • The area of the study is located in Ogcheon district, middle part of Ogcheon Fold Belt. The area is covered by metasedimentary rocks of Ogcheon Supergroup at northern, eastern and southern part. Jurassic Ogcheon granite which intruded into Ogcheon Supergroup at central part, was intruded by Cretaceous quartz porphyry at western part. The granite consists of quartz, plagioclase, alkali feldspar, biotite, sphene, apatite, epidote, opaque and so on. It is generally characterized by grey to light grey, medium-grained, mafic enclave and partly weak foliation. In terms of geochmical compositions, the granite is felsic, peraluminous, subalkaline and calc-alkaline, and it was differentiated from single granitic magma. It shows parallel LREE enrichment and HREE depletion patterns with 0.84 Eu negative anomaly, which has REE variation trend and anomaly value similar to Jurassic granites in Korea. From charactristics of petrology, mineralogy and geochmistry, it may be interpreted that the Ogcheon granite body was derived from melting of I-type crustal material related to syn-collisional tectonic setting and emplaced more or less rapidly into the Ogcheon Supergroup.

  • PDF

Geological Review on the Distribution and Source of Uraniferous Grounwater in South Korea (국내 고함량 우라늄 지하수의 분포와 기원에 관한 지질학적 고찰)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.593-603
    • /
    • 2018
  • The most of groundwater with high U-concentration occur in the Jurassic granite of Gyeonggi massif and Ogcheon belt, and some of them occur in the Cretaceous granite of Ogcheon belt. On the contrary, they do not occur in the Jurassic granite of Yeongnam massif and the Cretaceou granite of Gyeongsang basin. The Jurassic and Cretacous granite, the host rock of high U-groundwater, were resulted from parental magma with high ratio of crustal material and highly differentiated product of fractional crystalization. These petrogenetic characteristics explain the geological evidence for preferential distribution of uraniferous groundwater in each host rock. It were reported recently that high U-content, low Th/U ratio and soluble mineral occurrence of uraninite in the two-mica granite of Daejeon area which have characteristics of S-type peraluminous and highly differntiated product. It is the mineralogical-geochemical evidences supporting the fact that the two-mica granite is the effective source of uranium in groundwater. The biotite granite and two-mica granite of Jurassic age were reported as biotite granite in many geological map even though two-mica granite occur locally. This fact suggest that the influence of two-mica granite can not be ignored in uraniferous groundwater hosted by biotite granite.

옥천변성대 서남부지역 변성퇴적암

  • 김성원;오창환;이덕수;이정후
    • Proceedings of the Petrological Society of Korea Conference
    • /
    • 2002.05a
    • /
    • pp.1-38
    • /
    • 2002
  • 옥천변성대 서남부지역은 변성이질암의 광물조합을 기준으로 남동부부터 북서방향으로 흑운모대, 석류석대, 십자석대의 3개의 변성광물분대로 나누어진다. Oh et al. (1995a)의 연구에서 보고된 남정석들은 산출되지 않는 것이 확인되었고 변성도는 흑운모대에서 석류석대를 거쳐 십자석대로 갈수록 증가한다. 쥬라기 화강암 접촉부의 국부적인 변성암류에서는 화강암에 의한 접촉변성작용에 의해 형성된 홍주석과 규선석이 산출된다. 흑운모대의 변성 압력-온도는 4.2 - 5.1 kb, 400 - 500 $^{\circ}C$이다. 십자석대의 정누대구조를 가지는 석류석과 석류석안의 사장석, 흑운모, 금흥석, 일메나이트포유광물의 공생관계로 추정한 압력-온도 (석류석 주변부: 7.0 - 8.0 kb, 550 - 620 $^{\circ}C$; 석류석 중심부: 4.0 - 5.0 kb, 420 - 520 $^{\circ}C$) 및 십자석대 내에서 후퇴변성작용 및 접촉변성작용 받은 석류석 주변부에 기록된 압력-온도 조건(약 2.0 - 3.0kb, 450 - 55$0^{\circ}C$)과 함께 옥천변성대 서남부지역의 변성암류가 시계방향의 압력-온도 경로를 겪었음을 지시한다. 연구지역 내에서 정밀 기재된 단면들에 대한 퇴적환경을 종합하면 대체 적으로 남동부에서는 천해성 환경이 인지되나 북서쪽으로 갈수록 대륙사면을 거쳐 분지 중심의 환경으로 전이되는 경향을 보인다. 이러한 퇴적상의 공간적 분포는 분지의 남동쪽보다 북서쪽의 침강이 우세하였던 것으로 해석될 수 있으며, 이는 곧 분지가 형성될 때 반지구대 (half graben) 형태로 분지가 열개 (rifting) 되었음을 의미한다. 각 변성분대에서 채취한 변성이질암으로부터 측정된 K-Ar 과 40Ar/39Ar 흑운모와 백운모 연대들은 149 - 167 Ma에 집중된다. 그리고 각 변성분대에서 동일시료에 대한 K-Ar 과 40Ar/39Ar 연대들은 동일시기를 지시함으로 연대적인 신뢰성을 확인 할 수 있었다. 옥천변성대 서남부지역의 변성암류를 관입하는 2개의 괴상의 화강암과 1개의 엽리화강암에서 얻어진 백운모와 흑운모들의 K-Ar 연대는 모두 156 Ma이며 옥천변성대 서남부지역의 변성이 질암의 연대와 유사하다. 이는 연구지역의 변성암류와 화강암류는 40Ar/39Ar 과 K-Ar 계의 흑운모와 백운모의 폐쇄온도 (약 300 - 350 $^{\circ}C$) 까지 동시에 냉각된 사실을 지시한다. 각섬석 편암내의 각섬석들은 복잡한 40Ar/39Ar 연대를 보여주며 일부가 평형연대를 보여주지만 특별한 의미 부여가 힘들다.

  • PDF

충남 금산지역 쥬라기화강암의 지구 화학적 특성

  • 홍세선;홍영국
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.294-297
    • /
    • 2003
  • 금산지역은 옥천층군 중심부에 위치하고 있으며 금산화강암체로 명명된 저반형의 화강암 두 암체가 북동부에서 남서부 방향으로 넓게 관입 분포하고 있다. 이 화강암체에 대하여 금산도폭, 무주도폭등에서는 흑운모화강암과 반상흑운모화강암으로 구분하였으며, 진호일외(1995)는 등립 우백질화강암, 반상 흑운모화강암, 반상 홍색장석화강암, 세리에이트 우백질화강암, 세리에이트 홍색장석화강암, 등립 알칼리장석 화강암, 등립 홍색장석화강암, 미아롤리틱 홍색장석화강암, 등립 흑운모화강암 등 9가지로 구분하였다. (중략)

  • PDF