한반도 남부 지각 속도구조를 밝히기 위해서, 서북서-동남동 방향의 2002년도 측선 294 km와 북북서-남남동 방향의 2004년도 측선 335 km를 따라 인공적으로 발생시킨 지진파 자료를 각각 120초와 150초 기록하였다. 초동주시 역산과정을 통하여 속도단면을 작성하였으며, 역산 시 초기모델은 측선 주변의 고정관측소에서 기록한 원거리 지진자료의 수신함수역산으로 구한 1차원 속도구조자료를 활용하였다. 파선경로는 2.0 km와 7.1 km 깊이에 속도 6.0 km/s와 7.1 km/s를 갖는 굴절면이 존재하며, 굴절파 속도 $7.8{\sim}8.1\;km/s$의 모호면은 $30.8{\sim}36.1\;km$ 깊이에 존재함을 보인다. 속도단면은 옥천계 하부 $6{\sim}7\;km$ 깊이에 상당한 규모의 저속도층이 15 km 깊이의 속도 불연속면 상부에 존재하며, 영동단층은 10 km 이상 깊이까지 연장되어 있고, 최대 4.2 km 정도두께를 갖는 경상분지 하부에 고속도층이 얕게 분포하는 것으로 분석된다.
한반도 남부 지각 속도구조를 밝히기 위해서, 서북서-동남동 방향의 2002년도 측선 294 km와 북북서-남남동 방향의 2004년도 측선 335 km를 따라 인공적으로 발생시킨 지진파 자료를 각각 120초와 150초 기록하였다. 초동주시 역산과정을 통하여 속도단면을 작성하였으며, 역산 시 초기모델은 측선 주변의 고정관측소에서 기록한 원거리 지진자료의 수신함수역산으로 구한 1차원 속도구조자료를 활용하였다. 파선경로는 2.0 km와 7.1 km 깊이에 속도 6.0 km/s와 7.1 km/s를 갖는 굴절면이 존재하며, 굴절파 속도 7.8∼8.1 km/s의 모호면은 30.8∼36.1 km 깊이에 존재함을 보인다. 속도단면은 옥천계 하부 6∼7 km 깊이에 상당한 규모의 저속도층이 15 km 깊이의 속도 불연속면 상부에 존재하며, 영동단층은 10 km 이상 깊이까지 연장되어 있고, 최대 4.2 km 정도두께를 갖는 경상분지 하부에 고속도층이 얕게 분포하는 것으로 분석된다.
옥천계변성암 지역에 분포하는 15개 먹는샘물 업체의 지하수 원수의 수질은 다른 지역의 지하수와는 상이한 특성을 보여준다. 특히 전기전도도, 경도, Ca, Mg, $HCO_3$는 전국의 여러 지역중에서 가장 높다. 대부분의 업체의 지하수의 양이온 함량비는 Ca>>Mg, Na>K의 순이며, 음이온의 함량비는 $HCO_3$>$SO_4$>Cl>F의 순을 보인다. 특히 중탄산의 함량은 다른 지역에 비하여 월등히 높으며 수질유형은 Ca-Mg-$HCO_3$>Ca-$HCO_3$>Ca-Na-$HCO_3$순으로 나타난다. 옥천계변성암 지역의 지하수는 대체로 탄산염의 용해작용에 의하여 영향을 받은 것으로 보인다. 원소별 상관계수는 Mg-$HCO_3$가 0.92로서 가장 높으며 Ca-$HCO_3$(0.88), Ca-Mg(0.80), Ca-Cl(0.78), Mg-$SO_4$(0.78), Ca-$SO_4$(0.71) 등도 비교적 좋은 상관계수를 보인다. 이같은 현상은 탄산염 석고나 경석고의 용해작용과 관련되는 것으로 보인다. Ca와 EC간의 관계는 결정계수(determinative coefficient)가 R2=0.87인데 비하여, EC와 (K+Na+Ca)원소 전체의 관계는 결정계수가 R2=0.89로서 EC에 대한 Ca의 기여도는 주요 양이온들 가운데서 가장 크다. Ca와 HCO$_3$, Ca와 Mg간의 결정계수는 양호한 편인데, 이들은 서로 화학적 관련성을 가지면서 거동함을 나타낸다. 실리카 상들을 제외한다면 대부분의 지하수는 방해석의 포화도에 가장 근접한 상태를 보여 주며 돌로마이트도 점차 포화상태에 가까워 지고 있다. 그러나 석고, 경석고, 형석에 대하여는 불포화정도가 다소 큼을 나타낸다. 탄산염은 물-암석과의 반응이 어느 정도 더 진행되면 곧 포화상태에 도달하게 되어 더 이상 지하수의 수질화학에 영향을 주지 못하게 될 것으로 보인다.
옥천대의 흑색셰일 및 점판암이 존재하는 덕평-추부 지역의 암석-토양-작물계에서의 As의 부화정도, 분산양상, 환경지구화학적 관점에서 판단되는 잠재적 위해도의 평가를 위하여 암석, 토양 및 농작물시료를 채취하여 INAA, ICP-AES, ICP-MS를 이용하여 As을 포함한 잠재적 특성원소의 화학분석을 수행하였다. 암석분석의 결과 덕평 및 추부지역의 흑색셰일에서 As의 평균 함량은 각각 23 mg/kg, 57 mg/kg 로 전 세계 계일 및 흑색셰일의 평균값보다 부화된 값을 나타하였다. 이외에도 Ba, Cr, Mn, Mo, Ni, Se, U 및 V가 매우 부화된 양상을 보였다. 흑색셰일로부터 유래된 토양중의 As는 덕평지역의 밭토양은 28 mg/kg, 추부지역의 밭토양과 논토양은 33 mg/kg와 23 mg/kg로 농작물에 독성을 줄 수 있는 토양중의 잠재적 독성원소들의 최대 허용한계치(tolerable level) 보다도 부화된 값을 나타냈다. 토양시료들에 대한 As의 함량과 Mo, Se, U, Cu, Sb, Tl 간에는 비교적 좋은 양의 상관관계를 보였다 흑색 셰일 기반암 지역의 토양에서 재배된 농작물 시료에 대한 화학분석 결과, 벼의 줄기와 잎에 As의 축적이 매우 커서 덕평과 추부지역에서 각각 1.14 mg/kg와 1.35 mg/kg의 함량을 보인다. 토양내의 원소 함량과 작물 내로의 흡수정도인 생물학적 흡수계수(BAC, biological absorption coefficient)의 산출결과, As는 벼줄기와 잎>옥수수 잎>고추>콩잎=깻잎>옥수수 줄기>옥수수 열매의 순으로 감소하였으며, As가 열매와 같은 cereal products보다 잎과 식물에 토양으로부터 더 많은 양이 농축된다는 것을 추론학 수 있다.
충북 보은 일대에 분포하는 옥천계 지층 및 중생대 화강암을 대상으로 기반암의 지진파 속도 및 시편으로부터 3차원적인 지진파의 전달속도를 측정하고, 이의 결과 자료를 비교분석 하였다. 야외에서 측정된 P파의 평균속도는 불국사화강암이 2697m/s로서 최대이고 구룡산층2에서 861m/s로 최소의 속도를 보인다. 각 방위에 따른 P파의 이방성을 암종별로 비교하면 불굴사화강암에서 최대치(81%)를 장리층에서 최소치(46%)를 보이고, 8곳의 평균 이방성지수는 68.5%이다. 시료에서 측정된 P파의 평균속도를 비교하여 보면 구룡산층1, 구룡산층2,창리층 및 문주리층2에서 5000m/s이상이며, S파의 경우도 동일한 시료에서 3500m/s 이상의 높은 속도가 측정되었는데 이는 야외의 경우보다 3∼5배의 빠른 속도를 나타낸다. 또한 P파의 이방성지수는 불국사화강암과 구룡산1에서 60% 이상의 높은 수치를 보이나 다른 시료에서는 30%이하의 낮은 수치를 보인다. 이 수치는 야외에서 측정된 P파의 평균이방성지수 68.5%보다 현저히 낮은 수치로서 야외에서 측정된 P파의 방향에 따른 속도 차이가 시료의 경우보다 현저히 높았음을 뜻한다.
우리는 괴산 덕평리 지역의 소위 구룡산층과 대전 추부 지역의 창리층 흑색 점판암에 대한 납 동위원소 연대측정 결과를 보고한다. 덕평리 지역의 흑색 점판암은 270 Ma 내외의 Pb-Pb 연대를 보이고 U-Pb 연대는 정의되지 않는다. 그 Pb-Pb 연대는 같은 시료의 22개 uraninite 입자에 대한 CHIME 연대와 오차범위 내에서 일치한다. 이로 보아 uraninite는 형성 또는 변성작용에 의한 동위원소적 재평형 작용 이후 폐쇄계를 잘 유지하였지만 흑색 점판암이 지질학적으로 최근에 지표에 노출된 이후에는 전암 규모에서 개방계로 거동하였음을 알 수 있다. 박편 미조직 관찰에 의하면 흑색 점판암의 1차광물인 uraninite 외에 풍화기원 2차광물인 uranocircite, francevillite가 관찰된다. 덕평리 지역 흑색 점판암의 최고 변성온도 조건은 50$0^{\circ}C$ 내외이므로 (Kim et al., 2000) uraninite CHIME 연대의 폐쇄온도가 50$0^{\circ}C$ 이상이거나 uraninite의 형성시기와 변성시기 사이에 시간차가 거의 없었다고 판단된다. 덕평리 지역의 U 광화작용 시기는 이번 자료에 의해 고생대 말로 정의될 수 있으나 그 연대가 흑색 점판암의 모물질인 해저 흑색 유기질 퇴적물의 초기 속성작용과 관련 있는지 후기의 변성작용과 관련 있는지에 대해서는 광물학적인 연구가 더 진행되어야 한다. 옥천대 변성퇴적암의 일부가 고생대 말에 퇴적되었을 가능성은 황강리층 역의 xenotime 및 monazite에 대한 CHIME 연대측정 결과 (약 367 Ma; Adachi et al., 1996)에 의해서 지지된다. 추부 지역 흑색 점판암의 Pb-Pb 연대는 170 Ma 내외로서 인접한 쥬라기 화강암의 관입시기를 지시하는 것으로 생각된다. 이는 화강암체로부터의 거리로 볼 때 덕평리 지역과 추부 지역의 시료 채취 위치가 유사하지만 지하 천부에 관입한 백악기 속리산 화강암 (91$\pm$6 Ma, Cheong and Chang, 1997)에 의해서는 덕평리 지역 흑색 점판암의 납 동위원소계가 영향받지 않았다는 점과 대조적이다.
Various interpretations on the boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system, and on the geologic structure and stratigraphy of the $Okch{\check{o}}n$ system have been yielded by the previous studies, and they are still in hot debate. The present work has mainly studied on the boundary between the $Okch{\check{o}}n$ and $Chos{\check{o}}n$ systems in the south of $Jech{\check{o}}n$, and the geology in its vicinity to clarify the previous misinterpretations if any on the geologic structure and in trun stratigraphy of the area concerned. The boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system has been thought to be (1) gradational relation which means two systems are the same formation, (2) unconformable relation in which the $Okch{\check{o}}n$ system overlies the $Chos{\check{o}}n$ system, (3) unconformable relation in which the $Chos{\check{o}}n$ system overlies the Okchon system indicating that the age of the $Okch{\check{o}}n$ system is Precambrian, and (4) fault contact in which the $Okch{\check{o}}n$ system of Precambrian age comes in contact with the $Chos{\check{o}}n$ system of Cambro-Ordovician age. The present study clearly found that the relationship between the two systems is a fault zone contact. Shear zone of a width of 300 to 400m is developed, and andesitic volcanics and basic dikes are intruded along the fault zone. This fault contact is exactly the north extension of the Bonghwajae fault, which was denominated long time ago by two of the present authors. The eastern side of the fault has been uplifted so that the $S{\check{o}}changri$ formation of the $Okch{\check{o}}n$ system cropped out in the zone of the Great Limestone series. All the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, but the present study found an overthrust having a strike of $N8^{\circ}E$ and dip of $30^{\circ}NW$ between them, and the $S{\check{o}}changri$ formation has thrusted over the Great Limestone series at the central part of the study area. In the southern and northern parts of this uplifted $S{\check{o}}changri$ formation, the Great Limestone series rests unconformably on it. In the eastern part of the study area where the Mt. Dangdu is located and the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, Precambrian basement rock whose age is older than 1720+50 m.y. crops out in the northern part of the east-west trending high angle fault, and the Great Limestone series rests unconformably on the basement.
본 연구는 충청남도 논산군 벌곡면 일대 즉 벌곡면 도산리와 수락리에 발달한 지하수 충진지역을 대상으로 하였다. 조사 지역의 수계는 남북 방향으로 발달되어 있으며, 지질은 가장 고기에 해당하는 옥천계 창리층(Och)이 중앙부에 위치하며, 본 지역의 서쪽의 경상계 유천층군에 대비되는 응회암(Kslt)은 동쪽의 화강암(Kqb)과 북쪽의 석영반암(Kgf)에 의하여 관입 되었다. 각 지역에서 측정된 약 3000개의 절리면을 경사 방향과 각도를 구면투영하여 통계학적으로 우세한 방향을 찾아본 결과 화강암의 경우는 dipdirection/dip이 228~257/73~88, 010~150/70~85 두방향이, 창리층의 경우는 134~164/40~90, 214~249/55~89, 응회암은 291~332/75~82, 235~241/73~71의 방향이 우세하였다. 그러나 북부에 소규모로 분포하는 석영반암은 뚜렷한 방향성을 나타내지 않았다. 기반암에서의 P파 전달속도를 측정하여 최대치와 최소치를 비교한 결과 석영반암은 $5000(240)~2380(360^{\circ})m/s$로, 화강암은 $3846(210^{\circ})~1408(150^{\circ})m/s$ 응회암은 $5000(360^{\circ})~2323(150^{\circ})m/s$, 창리층 지역에서는 $6667(180^{\circ})~2000(030^{\circ})m/s$로 나타났다. 암석의 공학적 성질은 시료를 26면체의 시편으로 제작한후 각 방향별 동탄성계수 즉 뽀아송의 비, 강성률, 영률, 체적탄성률을 산출하여 야외에서 측정된 자료와 비교 분석 하였다.
Primary uraninite and secondary uranium minerals such as torbernite, metatorbernite, tyuyamunite, metatyuyamunite, autunite and metaautunite have been identified from various types of uranium ores. Uranium minerals occur as accessory minerals in both the primary and secondary ores. Low·grade uranium ores consist of various kinds of primary and secondary minerals. Major constituent minerals of primary uranium ores are graphite. quartz. Ba-feldspar and sericite/muscovite, and accessories are calcite, chlorite, fluorapatite, barite, diopside, sphene, rutile, biotite, laumontite, heulandite, pyrite, sphalerite and chalcopyrite, and secondary minerals consist of kaolinite, gypsum and goethite. Uraninite grains occur as microscopic very fine-grained anhedral to euhedral disseminated particles in the graphitic matrix, showing well·stratified or zonal distribution of uranium on auto-radiographs of low-grade uranium ores. Some uraninite grains are closely associated with very fine-grained pyrite aggregates, showing an elliptical form parallel to the schistosity. Some uraninite grains include extremely fine-grained pyrite particle. Sphalerite and pyrite are often associated with uraninite in graphite-fluorapatite nodule. The size of uraninite is $2{\mu}m$ to $20{\mu}m$ in diameter. Low-grade uranium ores are classified into 5 types on the basis of geometrical pattern of mineralization. They are massive, banded, nodular, quartz or sulfide veinlet-rich and cavity filling types. Well-developed alternation of uranium-rich and uranium-poor layers, concentric distribution of uranium in graphite-fluorapatite nodule and geopetal fabrics due to the load cast of the nodule suggest that the uranium was originally deposited syngenetically. Uraninite crystals might have been formed from organo-uranium complex during diagenesis and recrystallized by metamorphism. Secondary uranium minerals such as torbernite, tyuyamunite and autunite have been formed by supergene leaching of primary ores and subsequent crystallization in cavities.
Some of geologists in Korea recently postlated that Okchon system previously known to be precambrian age was the metamorphosed sediments of post-Chosen (Ordovician and pre-Kyeongsang (late Jurassic to Cretaceous) periods, or even definitely of Triassic period simply on the basis of the fact that Okcheon system overlies the Great Limestone series of Chosen system of Camber-ordovician age, and of other few assumptions of minor importance. As a result of such correlation, thick series of metasediments and Okcheon system of unknown age were established in this particular region and vaguely correlated to Paleozoic and Mesozoic sediments. Recent study done by the author reveled that: 1) only the upper Okcheon bed of S. Nakamura was true Okcheon system, and the middle and lower Okcheon beds were excluded, because they were correlated to Cambrian and Permian sediments resfectively, 2) Sangnaeri, Seochangri, and rengam formations of unknown age, and Baekhwasan, Jobong, and Ihwaryeong formations of Okcheon system of also unknown age were the metamorphosed Yangdeok system of Cambrian age, all of these formations were differentiated by the previous workers and were equivalent to the middle Okcheon system of S. Nakamure, and. 3) These metamorphosed Yangdeok system overlaid apparently the Great Limestone series in forms of overthrust and klippe which were produced by the orogeny took place during post-Daedong and pre-Kyeongsang period (probably middle to the Jurassic). The Sobaeksan Range, folded mountain Chains was also formed by this orogeny. Thus, Okcheon system newly defined by the author is precambrain age and consists in ascending order of Kemyenogsan, Hyangsan dolomite, and Daehangsan quartzite formation which were previously classified into metasediments of unknown age, and Munjuri, and Hwangkanri, formations which were differentiated into Okcheon system unknown age by the previous workers, but are of reversed sequence. Myeongori and Bukrori formations of Okcheon System are regard by the author as part of Hwangkanri formation. Few other assumption of minor important taken by the previous workers as their positive evidences are carefully explained that they were misinterpreted.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.