• Title/Summary/Keyword: 오팔-A

Search Result 14, Processing Time 0.023 seconds

Multiscale-Architectured Functional Membranes Based on Inverse-Opal Structures (멀티스케일 아키텍쳐링 기반 역오팔상 구조체 기능성 멤브레인 기술)

  • Yoo, Pil J.
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.421-431
    • /
    • 2016
  • Novel membrane technologies that harness ordered nanostructures have recently received much attention because they allow for high permeability due to their reduced flow resistance while also maintaining high selectivity due to their isoporous characteristics. In particular, the opaline structure (made from the self-assembly of colloidal particles) and its inverted form (inverse-opal) have shown strong potential for membrane applications on account of several advantages in processing and the resulting membrane properties. These include controllability over the pore size and surface functional moieties, which enable a wide range of applications ranging from size-exclusive separation to catalytically-reactive membranes. Furthermore, when combined with multiscale architecturing strategies, inverse-opal-structured membranes can be designed to have specific pores or channel structures. These materials are anticipated to be utilized for next-generation, high-performance, and high-value-added functional membranes. In this review article, various types of inverse-opal-structured membranes are reviewed and their functionalization through hierarchical structuring will be comprehensively investigated and discussed.

Biogenic Opal Production and Paleoclimate Change in the Wilkes Land Continental Rise (East Antarctica) during the Mid-to-late Miocene (IODP Exp 318 Site U1359) (동남극 윌크스랜드 대륙대의 마이오세 중-후기 동안 생물기원 오팔 생산과 고기후 변화(IODP Exp 318 Site U1359))

  • Song, Buhan;Khim, Boo-Keun
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.23-35
    • /
    • 2015
  • A 450 m-long sediment section was recovered from Hole U1359D located at the eastern levee of the Jussieau submarine channel on the Wilkes Land continental rise (East Antarctica) during IODP Expedition 318. The age model for Hole U1359D was established by paleomagnetic stratigraphy and biostratigraphy, and the ages of core-top and core-bottom were estimated to be about 5 Ma and 13 Ma, respectively. Biogenic opal content during this period varied between 3% and 60%. In the Southern Ocean, high biogenic opal content generally represents warm climate characterized by the increased light availability due to the decrease of sea-ice distribution. The surface water productivity change in terms of biogenic opal content at about 10.2 Ma in the Wilkes Land continental rise was related to the development of Northern Component Water. After about 10.2 Ma, more production of Northern Component Water in the North Atlantic caused to increase heat transport to the Southern Ocean, resulting in the enhanced diatom production. Miocene isotope events (Mi4~Mi7), which are intermittent cooling intervals during the Miocene, appeared to be correlated to the low biogenic opal contents, but further refinement was required for precise correlation. Biogenic opal content decreased abruptly during 6 Ma to 5.5 Ma, which most likely corresponds to the Messinian salinity crisis. Short-term variation of biogenic opal content was related to the extent of sea-ice distribution associated with the location of Antarctic Polar Front that was controlled by glacial-interglacial paleoclimate change, although more precise dating and correlation will be necessary. Diatom production in the Wilkes Land continental rise increased during the interglacial periods because of the reduced sea-ice distribution and the southward movement of Antarctic Polar Front.

Variation of Biogenic Opal Production on the Conrad Rise in the Indian Sector of the Southern Ocean since the Last Glacial Period (남극해 인도양 해역에 위치한 콘래드 해령 지역의 마지막 빙하기 이후 생물기원 오팔 생산의 변화)

  • JuYeon Yang;Minoru Ikehara;Hyuk Choi;Boo-Keun Khim
    • Ocean and Polar Research
    • /
    • v.45 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • Biological pump processes generated by diatom production in the surface water of the Southern Ocean play an important role in exchanging CO2 gas between the atmosphere and ocean. In this study, the biogenic opal content of the sediments was measured to elucidate the variation in the primary production of diatoms in the surface water of the Southern Ocean since the last glacial period. A piston core (COR-1bPC) was collected from the Conrad Rise, which is located in the Indian sector of the Southern Ocean. The sediments were mainly composed of siliceous ooze, and sediment lightness increased and magnetic susceptibility decreased in an upward direction. The biogenic opal content was low (38.9%) during the last glacial period and high (73.4%) during the Holocene, showing a similar variation to that of Antarctic ice core ΔT and CO2 concentration. In addition, the variation of biogenic opal content in core COR-1bPC is consistent with previous results reported in the Antarctic Zone, south of the Antarctic Polar Front, in the Southern Ocean. The glacial-interglacial biogenic opal production was influenced by the extent of sea ice coverage and degree of water column stability. During the last glacial period, the diatom production was reduced due to the penetration of light being limited in the euphotic zone by the extended sea ice coverage caused by the lowered seawater temperature. In addition, the formation of a strong thermocline in more extensive areas of sea ice coverage led to stronger water column stability, resulting in reduced diatom production due to the reduction in the supply of nutrient-rich subsurface water caused by a decrease in upwelling intensity. Under such environmental circumstances, diatom productivity decreased in the Antarctic Zone during the last glacial period, but the biogenic opal content increased rapidly under warming conditions with the onset of deglaciation.

Geotechnical Properties of Pelagic Red Clay in Northeast Equatorial Pacific (북동태평양 원양성 적점토의 지질공학적 특성에 관한 연구)

  • Chi, Sang-Bum;Lee, Hyun-Bok;Hyeong, Ki-Seong;Ju, Se-Jong;Lee, Gun-Chang;Ham, Dong-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.286-294
    • /
    • 2008
  • In order to understand the physical properties of deep-sea sediments, which mainly consist of pelagic red clays, sediment samples were collected at 24 stations using a multiple corer in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific. The sampled sediment cores were examined for the mass physical properties(i.e. grain size distribution, mean grain size, water content, specific grain density, wet bulk density, void ratio, and porosity) and the geotechnical properties(i.e. shear strength and consistency limits) with the content of biogenic opal and mineral composition. Although KR1 and KR2 areas on the same latitude are logitudinally far from each other, the mass physical properties of these areas are not distinctly different except for shear strengths. The maximum shear strength of surface sediments in KR2 area is higher than that in KR1 due to the appearance of a consolidated lower layer(Unit 3) in the sediment core from KR2.