• Title/Summary/Keyword: 오차평가기법

Search Result 656, Processing Time 0.027 seconds

Building Boundary Reconstruction from Airborne Lidar Data by Adaptive Convex Hull Algorithm (적응적 컨벡스헐 알고리즘을 이용한 항공라이다 데이터의 건물 경계 재구성)

  • Lee, Jeong-Ho;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.305-312
    • /
    • 2012
  • This paper aims at improving the accuracy and computational efficiency in reconstructing building boundaries from airborne Lidar points. We proposed an adaptive convex hull algorithm, which is a modified version of local convex hull algorithm in three ways. The candidate points for boundary are first selected to improve efficiency depending on their local density. Second, a searching-space is adjusted adaptively, based on raw data structure, to extract boundary points more robustly. Third, distance between two points and their IDs are utilized in detecting the seed points of inner boundary to distinguish between inner yards and inner holes due to errors or occlusions. The practicability of the approach were evaluated on two urban areas where various buildings exist. The proposed method showed less shape-dissimilarity(8.5%) and proved to be two times more efficient than the other method.

Functional disposable use flow tube converting the respiratory air flow rate into averaged dynamic pressure (호흡기류를 동압력으로 변환하는 기능성 일회용 호흡관)

  • Kim, Kyung-Ah;Kim, Hyun-Shik;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.125-131
    • /
    • 2002
  • Respiratory air flow rate is necessarily measured for the pulmonary function evaluation. The currently used devices are exposed to the problems of measurement reliability and cross-patient infection. The present study introduced a new technique which converted the bidirectional air flow rate into averaged dynamic pressure based on the famous Bernoulli's energy conservation principle. Single use plastic sensing element was assembled within the flow tube(mouth piece) made of paper, which was named "functional single use flow tube". Experiment demonstrated only ${\pm}1.5%$ relative error in the standard 3L volume measurement procedure well within the error limit suggested by the American Thoracic Society(ATS). Disposable use design completely eliminated cross-patient infection. The present device is best useful and safe for clinical respiratory air flow measurement such as spirometry.

Analysis of Statistical Characteristics of Annual Precipitation in Korea Using Data Screeening Technique (데이터 스크린 기법을 이용한 연강수량의 통계적 특성 분석)

  • Jeung, Se-Jin;Lim, Ga-Kyun;Kim, Byung-Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.3
    • /
    • pp.15-28
    • /
    • 2020
  • Hydrological data is very important in understanding the hydrological process and identifying its characteristics to protect human life and property from natural disasters. In particular, hydrological analysis are often performed assuming that hydrological data are stationary. However, recently climate change has raised the issue of climate stationary, and it is necessary to analyze the nonstationary of the climate. In this study, a method to analyze the stationarity of hydrological data was examined using the annual precipitation of 37 meteorological stations with long - term record data. Therefore, in this study, the stationary was determined by analyzing the persistence, trend, and stability using annual precipitation. Overall results showed that a trend was observed in 4 out of 37 stations, stable was investigated at 15 stations, and persistence was shown at 4 stations. In the stationary analysis using the annual precipitation data, 25 stations (67% of 37 stations) were nonstationary.

Neural Relighting using Specular Highlight Map (반사 하이라이트 맵을 이용한 뉴럴 재조명)

  • Lee, Yeonkyeong;Go, Hyunsung;Lee, Jinwoo;Kim, Junho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.87-97
    • /
    • 2020
  • In this paper, we propose a novel neural relighting that infers a relighted rendering image based on the user-guided specular highlight map. The proposed network utilizes a pre-trained neural renderer as a backbone network learned from the rendered image of a 3D scene with various lighting conditions. We jointly optimize a 3D light position and its associated relighted image by back-propagation, so that the difference between the base image and the relighted image is similar to the user-guided specular highlight map. The proposed method has the advantage of being able to explicitly infer the 3D lighting position, while providing the artists' preferred 2D screen-space interface. The performance of the proposed network was measured under the conditions that can establish ground truths, and the average error rate of light position estimations is 0.11, with the normalized 3D scene size.

Fabrication Measurement and Evaluation of a Parabolic Mirror with the Diameter of 450 mm(f/2.7) by Autostigmatic Null Lens System (자동무수차점 방식 널 렌즈 광학계를 이용한 직경 450 mm(f/2.7) 포물면경의 제작 및 측정 평가)

  • Lee, Young-Hun;Jo, Jae-Heung;Rim, Cheon-Seog;Lee, Yun-Woo;Yang, Ho-Soon;Lee, Jae-Hyeob;Lee, In-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.165-174
    • /
    • 2006
  • The autotstigmatic null lens system is designed and constructed for the fabrication of a parabolic mirror with the diameter of 450 mm(f/2.7). And the measurement reliability is also analyzed theoretically by means of the tolerancing technique using lens design software(CODE V). From this analysis, we can precisely fabricate a parabolic mirror with the large diameter of 450 mm(f/2.7). Meanwhile, in order to confirm the fabrication results by the autostigmatic method, the mirror surface is tested again by an autocollimating method that uses only a plane mirror without any null lens.

Accuracy Improvement of DEM Using Ground Coordinates Package (공공삼각점 위치자료를 이용한 DEM의 위치 정확도 향상)

  • Lee, Hyoseong;Oh, Jaehong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.567-575
    • /
    • 2021
  • In order to correct the provided RPC and DEM generated from the high-resolution satellite images, the acquisition of the ground control point (GCP) must be preceded. This task is a very complicate that requires field surveys, GPS surveying, and image coordinate reading corresponding to GCPs. In addition, since it is difficult to set up and measure a GCP in areas where access is difficult or impossible (tidal flats, polar regions, volcanic regions, etc.), an alternative method is needed. In this paper, we propose a 3D surface matching technique using only the established ground coordinate package, avoiding the ground-image-location survey of the GCP to correct the DEM produced from WorldView-2 satellite images and the provided RPCs. The location data of the public control points were obtained from the National Geographic Information Institute website, and the DEM was corrected by performing 3D surface matching with this package. The accuracy of 3-axis translation and rotation obtained by the matching was evaluated using pre-measured GPS checkpoints. As a result, it was possible to obtain results within 2 m in the plane location and 1 m in height.

Detection of Fracture Signals of Low Prestressed Steel Wires in a 10 m PSC Beam by Continuous Acoustic Monitoring Techniques (연속음향감지기법을 이용한 긴장력이 감소된 10 m PSC보의 PS 강선 파단음파 감지)

  • Youn, Seok-Goo;Lee, Chang-No
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.113-122
    • /
    • 2010
  • Corrosion of prestressing tendons and wire fractures in grouted post-tensioned prestressed concrete bridges have been considered as a serious safety problem. In bridge evaluation the condition of prestressing tendons should be inspected, and if corroded tendons are found, the loss of tendon area should be included when we calculate the ultimate strength. In the previous study, it was evaluated that continuous acoustic monitoring techniques could be considered as a reliable non-destructive method for detecting wire fractures of fully grouted post-tensioned prestressing tendons. In the present study, an experimental test was performed for detecting wire fractures of post-tensioned prestressing tendons which are prestressed lower than current design level. A 10 m prestressed concrete beam was fabricated, which included two tendons prestressed 66 percentage and 40 percentage of tensile strength, respectively. The corrosion of two tendons was induced by an accelerated corrosion equipment and the test beam was monitored by using seven acoustic sensors and a continuous acoustic monitoring system. From each prestressing tendon, two acoustic signals of wire fractures were successfully detected and source locations were estimated within 20 mm error. Based on the test results, it is considered that continuous acoustic monitoring techniques can be applied to detect low-prestressed wire fracture in fully grouted post-tensioned prestressed concrete beams.

The study of a practical modeling method for the analysis of dynamic behavior by the mockup test of prestressed concrete girder (PSC I형 거더 실물 모형체 실험을 통한 동적거동특성 분석의 실용적 모델링 기법 연구)

  • Kim, Hyung-Kyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.148-156
    • /
    • 2018
  • The integrity assessment of the bridge behavior is generalized by field data of a static load-deformation curve and dynamic properties such as impact factors and natural frequencies. Evaluating it with numerical analysis is a reasonable method. The results of the mockup test and the numerical analysis are corresponded with each other since the behavior of service load proceeds in elastic region. In case of the dynamic behavior of structure, especially for the analysis of vibration, the result of the mockup test differs from the result of numerical analysis a little due to the geometric shape and non-homogeneous materials. In order to converge on these tolerances, this study suggested several numerical models, analyzed the sensitivity and finally offered a practical modeling method for the estimation of bridge on the basis of the result of mockup test. Based on the model substituted concrete section for strands section, the natural frequency of the model composed with axial stiffness of strands or the model applied the modified modulus of elasticity was closest with the result of the mockup test.

Estimation of Compressive Strength of Reinforced Concrete Vertical and Horizontal Members Using Ultrasonic Pulse Velocity Method (초음파속도법을 이용한 철근콘크리트 수직 및 수평부재의 압축강도 추정)

  • Hong, Seonguk;Lee, Yongtaeg;Kim, Seunghun;Kim, Jonghyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.197-205
    • /
    • 2018
  • Recently, remodeling is increasing due to aging of buildings. Therefore, the importance of quality control of structures has been raised, and interest in safety diagnosis and evaluation of structures has been increasing. In order to accurately diagnose old buildings, a diagnostic evaluation technique is needed to evaluate the defects of structures in advance. In addition, as the safety diagnostic criteria for reconstruction are improved and the weight of structural safety is increased, researches on safety diagnosis techniques of structures that are faster and more reliable are needed. In this study, we tried to estimate the compressive strength by examining the correlation between ultrasonic pulse velocity and compressive strength of a 1 story structure consisting of vertical and horizontal members of reinforced concrete using ultrasonic pulse velocity method, which is one of the nondestructive testing methods. The purpose of this study is to examine the applicability in the field. As a result, the estimated average error rate of the compressive strength of the structure using the ultrasonic pulse velocity method was 28.7%, which confirmed the applicability in the field. However, in order to increase the accuracy of the estimation, the necessity of the reliable diagnostic method using the composite nondestructive testing method was confirmed.

Image Matching for Orthophotos by Using HRNet Model (HRNet 모델을 이용한 항공정사영상간 영상 매칭)

  • Seong, Seonkyeong;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.597-608
    • /
    • 2022
  • Remotely sensed data have been used in various fields, such as disasters, agriculture, urban planning, and the military. Recently, the demand for the multitemporal dataset with the high-spatial-resolution has increased. This manuscript proposed an automatic image matching algorithm using a deep learning technique to utilize a multitemporal remotely sensed dataset. The proposed deep learning model was based on High Resolution Net (HRNet), widely used in image segmentation. In this manuscript, denseblock was added to calculate the correlation map between images effectively and to increase learning efficiency. The training of the proposed model was performed using the multitemporal orthophotos of the National Geographic Information Institute (NGII). In order to evaluate the performance of image matching using a deep learning model, a comparative evaluation was performed. As a result of the experiment, the average horizontal error of the proposed algorithm based on 80% of the image matching rate was 3 pixels. At the same time, that of the Zero Normalized Cross-Correlation (ZNCC) was 25 pixels. In particular, it was confirmed that the proposed method is effective even in mountainous and farmland areas where the image changes according to vegetation growth. Therefore, it is expected that the proposed deep learning algorithm can perform relative image registration and image matching of a multitemporal remote sensed dataset.