Communications for Statistical Applications and Methods
/
제15권2호
/
pp.255-264
/
2008
공변량 값이 주어졌을 때 반응변수의 값을 예측하는 데에는 평균제곱오차를 최소로 하는 것을 고려하는 것이 보통이지만, 최근 Park과 Shin (2005), Jones 등 (2007) 등에서 평균제곱오차대신 평균제곱상대오차에 기반한 예측을 연구한바 있다. 이 논문에서는 Jones 등 (2007)의 방법을 대체할 새로운 비모수적 예측법을 제안하고, 제안된 방법의 유효성을 뒷받침하는 간단한 모의실험 결과를 제공한다.
Communications for Statistical Applications and Methods
/
제17권4호
/
pp.515-525
/
2010
본 논문에서는 패널회귀모형에서 회귀계수의 일반최소제곱추정량과 가중최소제곱추정량의 설계기반 성질을 살펴보았다. 복합표본이 주어진 경우에 두 추정량의 설계편향을 구하여 가중최소제곱추정량의 설계편향의 크기가 더 작음을 보였다. 또한 한국복지패널 데이터를 대상으로 모의실험을 실시하여 다음의 결과를 얻었다. 첫째, 일반최소제곱추정치의 상대편향이 가중최소제곱추정치의 상대편향보다 약 2배 정도 크게 나타났고 일반최소제곱추정치의 편향비가 더 크게 나타났다. 그리고 표본수가 증가하면 일반최소제곱 추정치의 상대편향은 완만하게 줄어든 반면 가중최소제곱추정치의 상대편향은 급속도로 줄어들었다. 둘째, 표본수가 증가하면 일반초소제곱추정치와 가중최소제곱추정치의 분산과 평균제곱오차는 모두 줄어들였다. 그러나 평균제곱오차에서 차지하는 편향제곱의 비율은 표본수가 증가할 때 일반최소제곱추정치에서는 증가하는 반면 가중최소제곱추정치에서는 감소하는 경향이 나타났다. 마지막으로 거의 모든 경우에 일반최소제곱추정치의 분산이 가중최소제곱추정치의 분산보다 작게 나타났다. 그리고 많은 경우에 일반최소제곱추정치의 평균제곱오차가 가중최소제곱추정치의 평균제곱오차보다 작게 나타났다. 그러나 표본수가 증가할수록 일반최소제곱추정치의 평균제곱오차가 가중최소제곱추정치의 평균제곱오차보다 커지는 경우가 늘어났다.
본 논문에서는 부가성 잡음이 존재하는 환경에서 진폭비교 모노펄스 레이더의 각도 추정 성능을 수치해석 기반으로 접근하여 분석한다. 편향 빔에 서로 상관이 없는 백색잡음이 추가되었을 때, 모노펄스 레이더의 각도 추정 성능을 평균제곱오차(MSE)를 통해 분석한다. 수치적분 기반의 평균제곱오차 결과는 몬테카를로 기반의 평균제곱오차 결과와 완벽히 겹치는 결과를 보이며 이는 몬테카를로 기반 평균제곱오차 결과에 99.8%에 해당한다. 또한 연산시간 측면에서 수치적분 기반의 평균제곱오차 분석법은 몬테카를로 기반의 평균제곱오차보다 매우 빠른 결과를 보인다. 따라서 제안된 수치적분 기반 평균제곱오차 방법을 통해 다양한 잡음환경에서 진폭비교 모노펄스레이더의 각도 추정 성능을 효율적으로 분석할 수 있다.
본 다중반응표면 최적화는 다수의 반응변수(품질특성치)를 동시에 고려하여, 입력변수의 최적 조건을 찾는 것을 목적으로 한다. 지금까지 다중반응표면 최적화를 위하여 다양한 방법이 제안되어 왔는데, 그 중 평균제곱오차 최소화법은 다수의 반응변수의 평균과 표준편차를 동시에 고려하여 최적화하는 방법이다. 이 방법은 기본적으로 평균과 표준편차가 동일한 가중치를 가지고 있다는 것을 전제로 하고 있다. 그러나 문제의 상황에 따라 평균과 표준편차에 서로 다른 가중치를 부여해야 하는 경우도 있다. 이에 본 논문에서는 기존의 평균제곱오차를 확대하여 평균과 표준편차에 서로 다른 가중치도 부여할 수 있도록 가중평균제곱오차 최소화법을 제안하고자 한다.
본 논문에서는 패널회귀모형에서 회귀계수 추정량으로 일반최소제곱추정량과 가중최소 제곱추정량의 설계기반 성질을 고찰한다. 회귀계수의 최소제곱추정량을 선형화하여 일반최소제곱추정량의 근사편향, 근사분산, 그리고 근사평균제곱오차의 수식과, 가중최소제곱추정량의 근사분산 수식을 유도한 후, 모의실험을 통하여 두 추정량의 근사분산 및 근사평균 제곱오차의 크기를 수치적으로 비교한다. 모의실험에서는 한국복지패널 3개년 데이터를 모집단으로 간주하고, 가구소득 변수를 관심변수로 하며 가구와 가구주 관련 7개 변수를 설명변수로 하는 유한모집단 회귀계수를 고려한다. 두 추정량의 설계기반 성질을 비교하기 위하여 표본수를 50에서 1,000까지 50 간격으로 설정하여 일반최소제곱추정량의 근사편향, 근사분산 그리고 가중최소제곱추정량의 근사분산을 계산한다. 모의실험을 통하여 다음과 같은 경향을 확인하였다. 첫째, 표본의 크기가 커지면 일반최소제곱추정량의 평균제곱오차가 가중최소제곱추정량의 분산보다 커진다. 둘째, 일반최소제곱추정량의 평균제곱오차를 가중최소제곱추정량의 분산으로 나눈비(ratio)는 설명변수에 따라 크기가 다르게 나타나고, 일반최소제곱추정량의 편향이 클수록 큰 값을 보인다. 셋째, 분산만 비교하면 일반최소제곱추정량의 분산이 가중최소제곱추정량의 분산보다 대부분의 경우에 더 작게 나타난다.
이 논문은 최소평균제곱계열 적응여파기의 성능을 동일한 수렴속도를 가지는 조건에서 최소평균제곱 알고리즘에 대한 상대적인 성능을 점근상대효율을 이용하여 분석하였다. 분석된 최소평균제곱 계열 알고리즘은 Hybrid II 및 MZF(Modified Zero Forcing) 알고리즘이다. 이들은 최소평균제곱 알고리즘을 단순화한 형태로서 각각 입력신호의 부호정보, 오차신호와 입력신호의 부호정보를 사용한다. 각 알고리즘에 대한 추정기의 점근상대효율은 동일수렴속도 조건에서 분석되었으며, 적응등화기에 대한 모의실험이 분석결과를 확인하기 위하여 수행되었다. 각 알고리즘에 대하여 유도된 점근상대효율에 대한 명시적 표현은 모의실험결과와 유사한 결과를 가졌으며, 점근상대효율은 입력신호와 오차신호간의 상관계수 값에만 좌우된다는 것이 밝혀졌다.
Communications for Statistical Applications and Methods
/
제5권3호
/
pp.685-694
/
1998
임상실험이나 신뢰성공학 분야에서 임의 중단자료를 이용한 비모수적 신뢰도 추정량으로 Kaplan-Meier 추정량과 Nelson형 추정량이 많이 사용되고 있다. 그러나 Nelson형 추정량은 평균제곱오차의 관점에서 Kaplan-Meier 추정량보다 추정능력이 우수한 반면 편의는 신뢰도가 감소함에 따라 양의 방향으로 점증하는 소표본 특성을 갖는다. Nelson형 추정량의 이러한 특성 때문에 신뢰도의 함수로 표현되는 잔여수명 분위수함수 등의 추정시에는 평균제곱오차의 관점에서 Kaplan-Meier 추정량보다 추정능력이 떨어짐을 볼 수 있다. 이러한 점을 고려하여 이 두 추정량을 가중평균으로 통합한 새로운 비모수적 신뢰도 추정량을 제안하고 추정량의 특성을 비교 분석하였다.
도근점측량과 같은 수평위치를 결정하는 방법 중 최소제곱법은 확률이론에 근거하여 잔차의 분산이 최소가 되는 조건을 만족하는 최확값을 산출하는 방법이다. 본 논문에서는 도선법으로 계산되는 현행 지적도근점측량의 성과와 최소제곱법을 적용한 도근점의 계산성과를 비교하고, 네트워크-RTK 측량결과와 각각의 조정방법에 대한 평균오차를 확인하였다. 실험 결과 최소제곱법이 도선법에 비해 폐합오차를 각 측점에 균등하게 배분하는 것을 확인하였으며, 네트워크-RTK 성과와의 평균오차도 도선법은 2.7cm, 최소제곱법은 2.2cm 산출되었다. 또한 과대오차가 발생한 경우 이를 확인하기 위한 방법으로 정방향 초기값과 역방향 초기값을 이용하여 수평각 과대오차를 확인할 수 있었으며, 관측된 측선거리와 계산된 측선 거리의 차이를 이용하여 거리 과대오차가 발생한 측선을 예측할 수 있었다.
다중반응표면 최적화는 다수의 반응변수(품질특성치)를 최적화하는 입력변수의 조건을 찾는 것을 목적으로 한다. 다중반응표면 최적화를 위해 제안된 가중평균제곱오차(Weighted Mean Squared Error, WMSE) 최소화법은 평균제곱오차의 구성요소인 제곱편차와 분산에 서로 다른 가중치를 부여하는 방법이다. 지금까지 WMSE 최소화법과 관련하여, 개별 반응변수의 WMSE를 구성한 후 이들의 가중합을 최소화하는 가중합 기반 WMSE 최소화법이 제안되었다. 그러나 가중합 기반법은 목적함수 공간에서 볼록하지 않은 구간이 있고 이 구간에서 가장 선호되는 해가 존재할 경우 이 해를 찾아내지 못한다는 한계를 지니고 있다. 본 논문에서는 기존의 가중합 기반법의 한계점을 극복하기 위하여 Tchebycheff Metric 기반 WMSE 최소화법을 제안하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.