Latent Class model has been considered recently by many researchers and practitioners as a tool for identifying heterogeneous segments or groups in a population, and grouping objects into the segments. In this paper we consider data on prostate cancer patients from Korean National Cancer Institute and propose a method for grouping prostate cancer patients by using latent class Poisson model. A Bayesian approach equipped with a Markov chain Monte Carlo method is used to overcome the limit of classical likelihood approaches. Advantages of the proposed Bayesian method are easy estimation of parameters with their standard errors, segmentation of objects into groups, and provision of uncertainty measures for the segmentation. In addition, we provide a method to determine an appropriate number of segments for the given data so that the method automatically chooses the number of segments and partitions objects into heterogeneous segments.
Journal of the Korean Data and Information Science Society
/
v.27
no.4
/
pp.993-1000
/
2016
Semi-supervised learning makes it easy to use an unlabeled data in the supervised learning such as classification. Applying the semi-supervised learning on the regression analysis, we propose two methods for a better regression function estimation. The proposed methods have been assumed different marginal densities of independent variables and different smoothing parameters in unlabeled and labeled data. We shows that the overfitted pilot estimator should be used to achieve the fastest convergence rate and unlabeled data may help to improve the convergence rate with well estimated smoothing parameters. We also find the conditions of smoothing parameters to achieve optimal convergence rate.
The paper aims at examining the behavioral characteristics of the passenger car export of Gunsan, Pyeongtaek, and Ulsan port. This is accomplished by modelling export demand as exchange rate and the Unites States industrial production. All series span the period January 2001 to December 2010. I first show that both the series and the residuals are stationary at the 5 percent significance level. The result cannot reject the null hypothesis of a unit root in each of the level variables and of a unit root for the residuals from the cointegration regression at the 5 percent significance level. I hitherto make use of forecast error decomposition and historical decompositions The forecast error decomposition indicates that car export is endogenous to industrial production and exchange rate. The historical decompositions for the export show that the entire difference between actual export and the base forecast can be attributed to industrial production shocks since exchange rate moves closer to the actual data or the base forecast. It indicates that industrial production outperforms exchange rate in explaining the passenger car exports.
Journal of the Korean Data and Information Science Society
/
v.25
no.6
/
pp.1195-1205
/
2014
Compared with single design, powers of rank transformed statistic for testing main and interaction effects for $2{\times}2$ factorial in $4{\times}4$ latin square design are rapidly increased as effect size and replication size are increased. In general powers of rank transformed statistic are superior without regard to the diversified effect composition and the type of error distributions as nontesting factors are few and effect size are small. Powers of rank transformed statistic show much higher level than those of parametric statistic in exponential and double exponential distributions. Further powers of rank transformed statistic are very similar with those of parametric statistic in normal and uniform distributions.
We investigated multi-layer perceptrons and supervised learning algorithms, and also examined how to model functional relationships between covariates and response variables using a package called neuralnet. The algorithm applied in this paper is characterized by continuous adjustment of the weights, which are parameters to minimize the error function based on the comparison between the actual and predicted values of the response variable. In the neuralnet package, the activation and error functions can be appropriately selected according to the given situation, and the remaining parameters can be set as default values. As a result of using the neuralnet package for the infertility data, we found that age has little influence on infertility among the four independent variables. In addition, the weight of the neural network takes various values from -751.6 to 7.25, and the intercepts of the first hidden layer are -92.6 and 7.25, and the weights for the covariates age, parity, induced, and spontaneous to the first hidden neuron are identified as 3.17, -5.20, -36.82, and -751.6.
Gangwon-do is one of Korea's most popular tourist destinations, with varying tourism demands and trends across its subregions. It is crucial to identify the characteristics of tourism in each area and compare the tourism patterns over time to devise policies that revitalize tourism in each local government and promote balanced development across regions. In this paper, we classify the regions in Gangwon-do based on tourism data from the last four years and analyze the tourism pattern of each region using the non-Euclidean additive model proposed by Jeon et al. (2021). The model incorporates the proportions of visitors by age groups and the proportions of navigation searches by destination types as two covariates, and the proportions of tourism expenditure types as a response variable. We estimate the model using the smooth-backfitting method and coordinate-wise bandwidth selection. The results are visualized in ternary plots, and changes in tourism patterns over time are analyzed by comparing the ratios of prediction errors to fitting errors.
Korean Journal of Agricultural and Forest Meteorology
/
v.19
no.3
/
pp.130-139
/
2017
The crop damage caused by strong wind was predicted using the wind speed data available from Korean Meteorological Administration (KMA). Wind speed data measured at 19 automatic weather stations in 2012 were compared with wind data available from the KMA's digital forecast. Linear regression equations were derived using the maximum value of wind speed measurements for the three-hour period prior to a given hour and the digital forecasts at the three-hour interval. Estimates of daily maximum wind speed were obtained from the regression equation finding the greatest value among the maximum wind speed at the three-hour interval. The estimation error for the daily maximum wind speed was expressed using normal distribution and Weibull distribution probability density function. The daily maximum wind speed was compared with the critical wind speed that could cause crop damage to determine the level of stages for wind damage, e.g., "watch" or "warning." Spatial interpolation of the regression coefficient for the maximum wind speed, the standard deviation of the estimation error at the automated weather stations, the parameters of Weibull distribution was performed. These interpolated values at the four synoptic weather stations including Suncheon, Namwon, Imsil, and Jangsu were used to estimate the daily maximum wind speed in 2012. The wind damage risk was determined using the critical wind speed of 10m/s under the assumption that the fruit of a pear variety Mansamgil would begin to drop at 10 m/s. The results indicated that the Weibull distribution was more effective than the normal distribution for the estimation error probability distribution for assessing wind damage risk.
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.9
/
pp.5585-5593
/
2014
This study tested the hypothesis that the significance of the heterogeneous dispersion parameter in safety performance function (SPF) used to estimate the expected crashes is affected by the endogenous heterogeneous prior distributions, and analyzed the impacts of the mis-specified dispersion parameter on the evaluation results for traffic safety countermeasures. In particular, this study simulated the Poisson means based on the heterogeneous dispersion parameters and estimated the SPFs using both the negative binomial (NB) model and the heterogeneous negative binomial (HNB) model for analyzing the impacts of the model mis-specification on the mean and dispersion functions in SPF. In addition, this study analyzed the characteristics of errors in the crash reduction factors (CRFs) obtained when the two models are used to estimate the posterior means and variances, which are essentially estimated through the estimated hyper-parameters in the heterogeneous prior distributions. The simulation study results showed that a mis-estimation on the heterogeneous dispersion parameters through the NB model does not affect the coefficient of the mean functions, but the variances of the prior distribution are seriously mis-estimated when the NB model is used to develop SPFs without considering the heterogeneity in dispersion. Consequently, when the NB model is used erroneously to estimate the prior distributions with heterogeneous dispersion parameters, the mis-estimated posterior mean can produce large errors in CRFs up to 120%.
Journal of the Korean Data and Information Science Society
/
v.24
no.5
/
pp.999-1011
/
2013
In this research, we propose a document recommendation method which can find documents that are relatively important to a specific document based on citation information. The key idea is parameter tuning in the Neumann kernal which is an intermediate between a measure of importance (HITS) and of relatedness (co-citation). Our method properly selects the tuning parameter ${\gamma}$ in the Neumann kernal minimizing the prediction error in future citation. We also discuss some comutational issues needed for analysing large citation data. Finally, results of analyzing patents data from the US Patent Office are given.
The volatility is one of most important parameters in the areas of pricing of financial derivatives an measuring risks arising from a sudden change of economic circumstance. We propose a Bayesian approach to estimate the volatility varying with time under a linear model with ARMA(p, q)-GARCH(r, s) errors. This Bayesian estimate of the volatility is compared with the ML estimate. We also present the probability of existence of the unit root in the GARCH model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.