• Title/Summary/Keyword: 오존소독부산물

Search Result 13, Processing Time 0.022 seconds

The Removal of Natural Organic Matter and Disinfection By-Product Precursor by Ozone (오존처리에 의한 천연유기물질 변화 및 염소 소독부산물 전구물질 제어)

  • Son, Hee-Jong;Roh, Jae-Soon;Kim, Sang-Goo;Kang, Lim-Seok;Lee, Yong-Doo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1099-1107
    • /
    • 2005
  • The purpose of this study was to find the transformation of organic matter as well as chlorine by product formation potential with ozone dosage. The removal percents of $UV_{254}$ and DOC were $23%{\sim}65%$ and $2%{\sim}15%$ and THMFP and HAAFP were $17%{\sim}52%$ and $9%{\sim}29%$ respectively at $0.5{\sim}3\;mgO_3/mgDOC$ ozone dosage. The hydrophobic and transphobic organic matter were reduced to $37%{\sim}68%$ and $35%{\sim}64%$, on the other hand the hydrophilir organic matter was increased to $40%{\sim}49%$ at $0.5{\sim}3\;mgO_3/mgDOC$ ozone dosage. The produced THMFP and HAAFP from the hydrophobic and transphilic organic matter were decreased greatly with increasing ozone dosage but these by products were increased in the hydrophilic matter. The produced THMFP and HAAFP per unit DOC were decreased and reactivity was reduced greatly with increasing crone dosage. The removal rate of THMFP per unit DOC was much higher than HAAFP by ozone treatment. The Br-THMFP per unit DOC was much more removed than chloroformFP per unit DOC with increasing ozone dosage. and The removal rate of TCAAFP per unit DOC was increased with increasing ozone dosage but TCAAFP was not affected by ozone treatment. Br-HAAFP was decreased at $1\;mgO_3/mgDOC$ ozone dosage but was not more removed above $1\;mgO_3/mgDOC$ ozone dosage. Br-HAAFP had lower removal effect than Br-THMFP by ozone treatment. The optimal ozone dosage can be determined about $1\;mgO_3/mgDOC$ by considering both disinfection by product formation and economical efficiency.

Peroxone ($O_3/H_2O_2$) Process in Drinking Water Treatment (정수처리에서의 Peroxone ($O_3/H_2O_2$) 공정)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Bin, Jae-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.296-308
    • /
    • 2010
  • The peroxone process overcomes many of the limitations associated with conventional and advanced water treatment systems using chlorine disinfection and ozone oxidation processes. Ozone and hydrogen peroxide generate highly reactive hydroxyl free radical which oxidize various organic compounds and has highly removal efficiency. The key issue to operate peroxone process is developing the method to achieve high process effectiveness when scavengers that inhibit generation of OH radicals or consume OH radicals are co-existing in the process. Also many studies, to minimize inorganic oxidative by-products such as bromate and to reduce disinfection by-products after chlorination behind peroxone process, are needed. And we should consider the excess residual hydrogen peroxide in the water. On-line instruments and control strategies need to be developed to ensure effective and robust operation under conditions of varying load. If problems above mentioned are solved, peroxone process will be applied diversely for water treatment.

A Case Study on Chlorine Dioxide Usage at a Conventional Water Treatment Plant (기존 정수장 이산화염소 시범도입 사례연구)

  • Lee, Song-Hee;Lee, Byung-Doo;Kim, Jin-Keun;Seog, Kwon-Soo;Lee, Joung-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.115-119
    • /
    • 2005
  • As the regulations on DBPs are tightened, many water treatment plants (WTPs) in Korea have already introduced or will introduce enhanced coagulation, alternative disinfectants and advanced treatments such as ozonization and granular activated carbon to improve drinking water qualify. After a phenol leakage accident at the Nakdong-River in 1991, 26 WIPs in Korea introduced carbon dioxide generators, but there has been no accumulation of significant operating data. This research summarizes things that should be considered for the introduction of carbon dioxide disinfection process to WTPs based on one year operation data from A WTP that has had high concentration of DBP during a specific period in the summer. The removal efficiency of DBP was $30{\sim}40%$, but those of 2-MIB, Geosmin were less than 10%. The generation rate of $ClO_2$ by-products such as chlorite and chlorate were $70{\sim}100%$ of input dosage, but the ratios increased over time. At the same time, strong chlorine odors may be produced in the distribution system when $ClO_2$ was used with $Cl_2$ as a result of reaction between the chlorite and residual chlorine.

The study of analysis of mutagen in drinking water (음용수 중 변이원성 물질(MX)에 관한 연구)

  • Yoo, Eun-Ah;Won, Jung-In
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.290-300
    • /
    • 2006
  • Disinfection by-products(DBPs), such as volatile trihalomethanes and the nonvolatile organochlorine acids, created by chlorination have been extensively studied. However MX which contributes 20-50% of the mutagenic activity in drinking water began to people's attention since 1990. Its chemical name is 3-chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone. According to WHO guidelines its concentration should be controlled, but its value has not been set up. Due to analytical difficulties in measuring this compound at such a low concentrations and lack of information on toxicity to human. Because concentration (ng/L) of MX in drinking water is low traditional testing methods are ineffective. Therefore this study compared LLE and SPE and have chosen SPE to improve preconcentration. MX has been identified in chlorinated drinking water samples in several countries but not in korea Therefore this study analyzed concentration of MX in different water sources and in spring water. This study examined the causes of changing MX content. Chlorine dosage, seasons, water temperature and distance from the source was all discoverd to be relavant. MX was analyzed in various treatment to find optimum disinfection methods. The outcome was that the concentration of MX was minimized when using biological activated carbon-O3 and granular activated carbon.

DBPs Variation by Chlorination and Preozonation in Drinking Water (염소 및 오존소독시 정수처리공정별 소독부산물 발생 변화)

  • Kim, Junsung;Choi, Yongwook;Chung, Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.676-681
    • /
    • 2005
  • This study was researched for disinfection by-products (DBPs) by preozonation, prechlorination and/or postchlorination. DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), halonitriles, and aldehydes were analyzed by the treatment steps of prechlorination, preozonation, sedimentation, filtration, and postchlorination comparatively. THMs were detected as $52.20{\mu}g/L$ after prechlorination and decreased during sedimentation and filtration process. The HAAs and aldehydes increased more during preozonaiton than prechlorination. However, chlorinated DBPs and aldehydes increased more by postchlorination. Chlorinated DBPs formed by preozonation increased 26% more than the chlorination process. If aldehydes were included in the total DBPs, DBPs increased up to 39% by preozonation. Preozonation could increase the removal efficiency of organic carbon during the coagulation and sedimentation processes. Ozonation might produce aldehydes that are not permitted for drinking water regulations. Also, DBPs were produced by preozonation than by chlorination. These results would bring a need for alternative disinfection studies to decrease DBPs.

Biodegradation Characteristics of Aldehydes using Biological Activated Carbon Process (생물활성탄 공정을 이용한 오존처리 부산물인 aldehyde류의 생분해 특성평가)

  • Ko, Jae-Hyun;Son, Hee-Jong;Kim, Young-Jin;Bae, Seog-Moon;Yoo, Pyung-Jong;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.989-996
    • /
    • 2009
  • In this study, the effects of biofilter media type (three different activated carbons and anthracite), empty bed contact time (EBCT) and temperature on the removal of four aldehyde species (formaldehyde, acetaldehyde, glyoxal and methylglyoxal) in BAC filters were investigated. Experiments were conducted at three water temperature (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15, and 20 min). The experimental results indicated that the coal based BAC retained more bacterial biomass on the surface of the activated carbon than the other BACs, and increasing EBCT or increasing water temperature also increased the four aldehyde species removal in BAC filters. To achieve above 80% of removal efficiency for four aldehyde species in a BAC filter, above 15 min EBCT at $5^{\circ}C$ and 10 min EBCT at above $15^{\circ}C$ were required. The kinetic analysis indicated a first-order reaction rate for the biodegradation of four aldehyde species at various water temperatures. Data obtained from the BAC filters at various temperatures were also used to evaluate pseudo first-order rate constants for four aldehyde species. The half-lives evaluated for formaldehyde, acetaldehyde, glyoxal and methylglyoxal in the coal-based BAC ranging from 0.89 to 3.19 min, from 0.75 to 3.35 min, from 2.16 to 4.72 min and from 1.49 to 3.86 min, respectively, could be used to assist water utilities in designing and operating BAC filters.

Ozone Effect on the Formation of Chlorine Disinfection Byproducts in Water Treatment Process (정수처리공정상 염소소독부산물형성에 미치는 오존의 영향)

  • Seong, Nak Chang;Park, Hyeon Seok;Lee, Seong Sik;Lee, Yong Hui;Lee, Jong Pal;Yun, Tae Gyeong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • The effect of ozone on the formation and the removal of disinfection byproducts(DBPs) of chlorination process was studied to elucidate the performance of water treatment process. The samples of raw water, prechlorination process, and preozonation process were analyzed quantitatively according to the Standard Methods for the Examination of drinking water. As a result, most of total trihalomethanes(THMs) which were formed in prechlorine treatment process was not removed in the preozonation process. Most of haloacetic acids(HAAs), haloacetonitriles(HANs), and chloral hydrate(CH) was removed in sedimentation and biological activated carbon(BAC) filtration processes. However, DBPs were increased more or less by postchlorine step. In particular, the formation of THMs and HAAs depends on ozone more than chlorine, but, the formation of HANs and CH depends on chlorine more than ozone. The seasonal variation of DBPs concentration for the year needs to be investigated to study the temperature effect because DBPs strongly depend on temperature among various efficient factors.

Characterizations of Assimilable Organic Carbon, Biodegradable Dissolved Organic Carbon, and Bacterial Regrowth in Distribution Systems by Water Treatment (배수관망에서 수처리에 의한 AOC, BDOC및 세균성장의 특성)

  • Chang, Young-Cheol;Kweon Jung;Yoo, Young-Sik;Kang, Mi-Hye;Andrew A. Randall
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.42-52
    • /
    • 2002
  • Two full-scale distribution systems, one treating water by ozonation and another treating water by nanofiltration in parallel with lime softening, were monitored for bacterial growth. Both systems kept disinfectant residuals surf as chlorine and chloramine in their respective distribution systems. Bacterial growth was assessed by heterotrophic plate counts (HPC) on R2A agar. In the distribution systems fed by ozonated water, HPCs were correlated ($R^2$= 0.97) using an exponential model with the assimilable organic carbon (AOC) at each sampling site. Also, it was observed that ozonation caused a significant increase in the AOC concentration of the distribution system (over 100% increase) as well as a significant increase in the bacterial counts of the distribution system (average increase over 100%). The HPCs from the distribution systems fed by nanofiltration in parallel with lime-softening water also displayed an exponential correlation ($R^2$ = 0.75) with an exponential model based on AOC. No significant correlation was found between bacteria growth on R2A agar and BDOC concentrations. Therefore, in agreement with previous work, bacterial growth in the distribution systems was found to correlate with AOC concentrations.

Bromate Formation by Ozonation Process and It′s Effect on Renal Toxicity in rat (오존처리에 의한 Bromate의 생성 및 흰쥐의 신장독성에 미치는 영향)

  • 정운용;이무강;최종원
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.442-451
    • /
    • 2002
  • In oder to investigate the effects of pH and temperature on the formation of bromate ion, which is ozonation by-products of bromine containing natural water. At the same intial pH condition, the increase of pH shown similar trends even if the reaction variables such as temperature and reaction time of ozonation were changed. As pH and temperature were increasing, the bromate concentration was increased but bromine components (HOBr/OBr-) were decreased with increasing pH from 3 to 10. Lipid peroxide content in the kidney was increased by bromate which was ingestion with 0.4g/L for 24 weeks in drinking water. Renal cytosolic enzyme system (XO, AO) of bromate group were significantly increased in comparison with those of normal group. But microsomal enzyme system were not affected. BUN level and urinary ${\gamma}$-glutamyltransferase activity were significantly increased in comparison with those of the normal. But, urinary lactate dehydrogenase activity was not affected. Renal glutathione content of rat was significantly decreased in comparison with those of normal rat given bromate. Renal glutathione S-transferase and ${\gamma}$-glutamylcysteine synthetase activities were significantly decreased in bromate-treated group, but change in renal glutathione reductase activity was not significantly different from any other experimental group.

Variation of Natural Organic Matter Characteristics through Water Treatment Processes (정수공정별 천연유기물질의 특성 변화)

  • Hwang, Jeong-Eun;Kang, Lim-Seok;Kim, Seung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1253-1261
    • /
    • 2000
  • Natural organic matter (NOM) which occurs ubiquitously in both surface and ground waters, consists of both humic (i.e., humic and fulvic acids) and nonhumic components. NOM in general as well as certain constituents are problematic in water treatment. From a regulatory perspective, concerns focus upon the role of NOM constituents as disinfection byproduct (DBP) precursors. The fractionation of NOM through water treatment processes can provide insight into treatment process selection and applicability. Problematic NOM fractions can be targeted for removal or transformation. Significant source-related differences in NOM were observed among various source waters. This study found that bulk Dissolved Organic Carbon (DOC) concentration was hardly removed by oxidation process. Oxidation transformed high Molecular Weight (MW) hydrophobic fraction into low MW hydrophilic fraction. Ozone reduced s-pecific Ultraviolet Absorbance (SUVA) value more than chlorine. High MW hydrophobic fraction was effectively removed by coagulation process. About 50% of Trihalomethane Formation Potential (THMFP) was removed by coagulation process.

  • PDF