• Title/Summary/Keyword: 오일휩

Search Result 7, Processing Time 0.018 seconds

분균일한 저널에서의 오일 휩

  • 이병준
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.273-277
    • /
    • 1994
  • 1990년 7월 이후 #2 베어링에서 발생한 오일 휩 현상을 감지하고서도 그 주원인을 일반적으로 흔히 발생하는 사항에서만 해결방안을 찾으려 노력한 결과 3년 반의 시간이 경과되었고, 뜻하지 않게도 저널 직경의 불균일에 의한 오일 휩 현상임 을 뒤늦게 알게 되었다. 철저한 점검의 필요성을 강조하지 않을 수 없다. 증기터빈 의 Overhaul 작업완료 후 Oil Flusning 절차가 있는데 이 Oil Flusning 방법에 문제 가 있다. 보통은 작업완료후 로터를 정지한 상태에서 베어링 앞에 Oil Strainer(Fine Mesh)를 설치하고 오일 펌프를 기동하여 Flushing을 하는데 이때 Strainer를 통과한 작은 이물질이 베어링내에 축적되었다가 터빈 기동시 이 이물질과 로터가 접촉되어 저널이 손상되게 된다. 인천화력3호기 #2 베어링의 오일 휩을 일으키게 한 저널의 편마모 현상도 이와같은 경우임에 틀림없다. 왜냐하면 '90, O/H시 #2 베어링 저널의 직경은 원통형이었기 때문이다. 따라서 Oil Flusning은 터빈 구조상 불가능한 경우 도 있겠지만 베어링 by-pass Oil Flushing 시스템으로 개조 운영되어야 저널 및 베어링 마멸현상을 제거할 수 있고 이로인한 오일 휩 현상도 예방할 수 있을 것으로 판단된다.

  • PDF

A Case Study on the Reduction of Noise and Vibration at the Backpass Heat Surface in the Power Plant Boiler (300MW급 증기터빈의 베어링 윤활유 온도조정에 의한 오일휩 제거방법에 관한 연구)

  • Hwang, Dal-Yeon;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.4
    • /
    • pp.56-61
    • /
    • 2008
  • The phenomena of oil whip in steam turbines take place for the unbalance force between a rotor shaft and bearing oil film. The several parameters that affect onset of oil whip have been well known. However, the major parameter of oil whip is shaft mis-alinement. A oil whip causes the high vibration and the shutdown of rotor system. We mostly stop the steam turbine to adjust a shaft re-alinement concerning oil whip. In this case, it needs many costs for maintenance and long shutdown times. In this study, we study and observe the oil whip of the 300MW steam turbine in many years and we conduct the field test for another steam turbine for reducing vibration from oil whip. The results of this study are that a oil whip takes place with a particular rotating speed or a particular turbine output and the oil temperature change is a very effective method for on-line oil whip treatment.

  • PDF

증기터빈의 오일 휩 현상 및 대책

  • Gu, Jae-Ryang
    • 열병합발전
    • /
    • s.37
    • /
    • pp.18-21
    • /
    • 2004
  • There are several bearing system at large steam-turbines in thermal power plant. The bearing system is one of the most important parts of rotating machinery. The steam turbine vibrations mainly depend on the bearing oil the shaft alignment condition. This paper describes on the steam turbine abnormal vibration due to the oil whip in terms of the shaft alignment in the thermal power plant.

  • PDF

Oil Whip Phenomena and Countermeasure on Steam Turbine in 350MW Load Thermal Power Plant (350MW급 화력 발전소 증기터빈의 오일 휩 현상 및 대책)

  • 구재량;김연환;배용채;김계연
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1015-1019
    • /
    • 2001
  • There are several bearing systems at the large steam-turbines in thermal power plant. The bearing system is one of the most important parts of rotating machinery. The steam turbine vibrations mainly depend on the bearing oil and the shaft alignment condition. This paper describes on the steam turbine abnormal vibration due to the oil whip in terms of the shaft alignment in the thermal power plant.

  • PDF

A Study of Rotor Vibration Reduction using Fuzzy Magnetic Damper System (퍼지 마그네틱 댐퍼를 사용한 회전체 진동의 저감 연구)

  • Lee, Hyeong-Bok;Kim, Yeong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.748-755
    • /
    • 2001
  • This paper concerns rotor vibration reduction using magnetic damper system. The fuzzy control logic is utilized to fulfill desired motion. The fuzzy system structure and membership function were first determined by simulation results. The researched control logic contains two fuzzy controller : reference position variation according to the rotor whirling status and error compensation algorithm to minimize the rotor vibration due to unbalance and unstable fluid film force. The Sugeno type output membership function was utilized by several trials and optimized membership function constants were selected from experiments. The experimental results show that the proposed method effectively control and reduce the rotor vibration with fluid film bearings.

A Study of Bearing Oil Whip Treatment in 300MW Steam Turbine with Oil Temperature Change (300MW급 증기터빈의 베어링 윤활유 온도조정에 의한 오일휩 제거방법에 관한 연구)

  • Hwang, Dal-Y.;Kim, Hwa-Y.;Moon, Seung-J.;Lee, Jae-H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.244-247
    • /
    • 2008
  • The phenomena of oil whip in steam turbine takes place for the un-balancing force between rotor shaft and bearing oil film. The several parameters that affect onset of oil whip have been well known. However, the major parameter of oil whip is shaft mis-alinement. A oil whip causes the high vibration and the shutdown of rotor system. We mostly stop the steam turbine to adjust a shaft re-alinement concerning oil whip. In this case, It needs many costs for maintenance and long shutdown times. In this study, we study and observe the oil whip of the 300MW steam turbine in many years and we conduct the field test for another steam turbine for reducing vibration from oil whip. The results of this study are that a oil whip takes place with a particular rotating speed or a particular turbine output and the oil temperature change is a very effective method for on-line oil whip treatment.

  • PDF

Effects of Oil Inlet Pressure and Temperature on the Dynamic Behaviors of a Full-Floating Ring Bearing Supported Turbocharger Rotor (터보차저 공급 오일 압력과 온도가 풀-플로팅 베어링의 동적 거동에 미치는 영향)

  • Lee, In-Beom;Hong, Seong-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.53-62
    • /
    • 2017
  • In this paper, the effect of oil conditions in rotor dynamic behaviors of a FFRB (Fully-Floating Ring Bearing) is investigated. Through the characteristic of a FFRB has two films, it has several advantages such as less friction loss and better stability over a wide speed range. However, it is difficult to supply a oil to the inner film. Thus, turbocharger makers have been paid significant attention to the lubrication of a FFRB because of its importance. This work focuses on the influence of oil inlet pressure and temperature. The methodologies of computational simulation and experimental test were used to estimate the rotor dynamic behaviors. In experimental test, the single-scroll turbocharger for the 1.4L diesel engine was used. The results show that the oil inlet pressure and temperature will place considerable influence on the rotor response. Oil conditions affect RSR (Ring Speed Ratio) which is cause of sub-synchronous vibrations, which also cause of oil whirling and whip even a critical speed. At higher speed range, the phenomenon of self-excited vibrations which is cause of instability of fluid whirl is investigated through the orbit shapes that consist of small orbit and large amplitude orbit. It is shown that some performance of a FFRB can be controlled by the conditions of oil supply. Finally, it was revealed that the oil induced operating conditions will strongly affect the turbocharger rotor dynamics behaviors.