• Title/Summary/Keyword: 오일러 수

Search Result 104, Processing Time 0.021 seconds

A 2kβ Algorithm for Euler function 𝜙(n) Decryption of RSA (RSA의 오일러 함수 𝜙(n) 해독 2kβ 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.71-76
    • /
    • 2014
  • There is to be virtually impossible to solve the very large digits of prime number p and q from composite number n=pq using integer factorization in typical public-key cryptosystems, RSA. When the public key e and the composite number n are known but the private key d remains unknown in an asymmetric-key RSA, message decryption is carried out by first obtaining ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$ and then using a reverse function of $d=e^{-1}(mod{\phi}(n))$. Integer factorization from n to p,q is most widely used to produce ${\phi}(n)$, which has been regarded as mathematically hard. Among various integer factorization methods, the most popularly used is the congruence of squares of $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2 which is more commonly used then n/p=q trial division. Despite the availability of a number of congruence of scares methods, however, many of the RSA numbers remain unfactorable. This paper thus proposes an algorithm that directly and immediately obtains ${\phi}(n)$. The proposed algorithm computes $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ or $2^k{\beta}_j=2{\beta}_j$ for $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$ to obtain the solution. It has been found to be capable of finding an arbitrarily located ${\phi}(n)$ in a range of $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$ much more efficiently than conventional algorithms.

Design Optimization of Transonic Wing/Fuselage System Using Proper Orthogona1 Decomposition (Proper Orthogonal Decomposition을 이용한 천음속 날개/동체 모텔의 최적설계)

  • Park, Kyung-Hyun;Jun, Sang-Ook;Cho, Maeng-Hyo;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.414-420
    • /
    • 2010
  • This paper presents a validation of the accuracy of a reduced order model(ROM) and the efficiency of the design optimization using a Proper Orthogonal Decomposition(POD) to transonic wing/fuselage system. Three dimensional Euler equations are solved to extrude snapshot data of the full order aerodynamic analysis, and then a set of POD basis vectors reproducing the behavior of flow around the wing/fuselage system is calculated from these snapshots. In this study, reduced order model constructed through this procedure is applied to several validation cases, and then it is confirmed that the ROM has the capability of the prediction of flow field in the space of interest. Additionally, after the design optimization of the wing/fuselage system with the ROM is performed, results of the ROM are compared with results of the design optimization using response surface model(RSM). From these, it can be confirmed that the design optimization with the ROM is more efficient than RSM.

Study of Neural Network Training Algorithm Comparison and Prediction of Unsteady Aerodynamic Forces of 2D Airfoil (신경망 학습알고리즘의 비교와 2차원 익형의 비정상 공력하중 예측기법에 관한 연구)

  • Kang, Seung-On;Jun, Sang-Ook;Park, Kyung-Hyun;Jeon, Yong-Hee;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.425-432
    • /
    • 2009
  • In this study, the ability of neural network in modeling and predicting of the unsteady aerodynamic force coefficients of 2D airfoil with the data obtained from Euler CFD code has been confirmed. Neural network models are constructed based on supervised training process using Levenberg-Marquardt algorithm, combining this into genetic algorithm, hybrid genetic algorithm and the efficiency of the two cases are analyzed and compared. It is shown that hybrid-genetic algorithm is more efficient for neural network of complex system and the predicted properties of the unsteady aerodynamic force coefficients of 2D airfoil by the neural network models are confirmed to be similar to that of the numerical results and verified as suitable representing reduced models.

Extended Kalman Filtering for I.M.U. using MEMs Sensors (반도체 센서의 확장칼만필터를 이용한 자세추정)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.469-475
    • /
    • 2015
  • This paper describes about the method for designing an extended Kalman filter to accurately measure the position of the spatial-phase system using a semiconductor sensor. Spatial position is expressed by the correlation of the rotated coordinate system attached to the body from the inertia coordinate system (a fixed coordinate system). To express the attitude, quaternion was adapted as a state variable, Then, the state changes were estimated from the input value which was measured in the gyro sensor. The observed data is the value obtained from the acceleration sensor. By matching between the measured value in the acceleration sensor and the predicted calculation value, the best variable was obtained. To increase the accuracy of estimation, designation of the extended Kalman filter was performed, which showed excellent ability to adjust the estimation period relative to the sensor property. As a result, when a three-axis gyro sensor and a three-axis acceleration sensor were adapted in the estimator, the RMS(Root Mean Square) estimation error in simulation was retained less than 1.7[$^{\circ}$], and the estimator displayed good property on the prediction of the state in 100 ms measurement period.

Mathematicians who overcomes their disabilities (신체적-정신적 장애를 극복하고 학문적 기여를 한 수학자들과 특수수학교육 환경)

  • Park, Kyung-Eun;Lee, Sang-Gu
    • Communications of Mathematical Education
    • /
    • v.29 no.3
    • /
    • pp.331-352
    • /
    • 2015
  • There are lots of disabled mathematicians who overcame their disabilities and made great achievement to the world of mathematics. In this article, we introduce disabled mathematicians who overcome their disabilities and contributes to the development of mathematics: Nicholas Saunderson, Leonhard Euler, Lewis Carroll, Solomon Lefschetz, Louis Antoine, Gaston Maurice Julia, Lev Semenovich Pontryagin, Abraham Nemeth, John Nash, Bernard Morin, Anatoli G. Vitushkin, Lawrence W. Baggett, Norberto Salinas, Theodore John Kaczynski, Richard E. Borcherds, Dimitri Kanevsky, Hwang Yun-seong, Emmanuel Giroux, Kim In-kang, Zachary J. Battles, and Pratish Datta. As well, we classify mathematics education environments and the role education played in helping these mathematicians overcome their disabilities and other obstacles. Then, we discuss educational environmental changes in the 21st century for special mathematics education.

Robust Design Optimization of a Fighter Wing Using an Uncertainty Model Constructed by Neural Network (신경망으로 구축된 불확실성 모델을 이용한 전투기 날개의 강건 최적 설계)

  • Kim, Ju-Hyun;Kim, Byung-Kon;Jun, Sang-Ook;Jeon, Yong-Hee;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.99-104
    • /
    • 2008
  • This study performed robust design optimization of fighter wing planform, considering uncertainty based on neural network model. To construct uncertainty model, aerodynamic performance and their sensitivity were evaluated by 3-dimensional Euler equations and adjoint variable method at experimental points selected from central composite design. In addition, because a neural network model has the advantage of capturing non-linear characteristic, it was possible to predict sensitivity of the aerodynamic performance efficiently and accurately . From the results of robust design optimization, it could be confirmed that the robustness of the objective function and constraints were improved if the variation of uncertainty and sigma level were increased.

Transonic/Supersonic Nonlinear Aeroelastic Analysis of a Complete Aircraft Using High Speed Parallel Processing Technique (고속 병렬처리 기법을 이용한 전기체 항공기 형상의 천음속/초음속 비선형 공탄성 해석)

  • Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Kwon, Oh-Joon;Paek, Seung-Kil;Hyun, Yong-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.46-55
    • /
    • 2002
  • A nonlinear aeroelastic analysis system in transonic and supersonic flows has been developed using high speed parallel processing technique on the network based PC-clustered machines. This paper includes the coupling of advanced numerical techniques such as computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD). The unsteady Euler solver on dynamic unstructured meshes is employed and coupled with computational aeroelastic solvers. Thus it can give very accurate engineering data in the structural and aeroelastic design of flight vehicles. To show the great potential of useful application, transonic and supersonic flutter analyses have been conducted for a complete aircraft model under developing in Korea.

Averaging TRIAD Algorithm for Attitude Determination (평균 TRIAD를 이용한 자세 결정)

  • Kim, Dong-Hoon;Lee, Henzeh;Oh, Hwa-Suk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • In general, accurate attitude information is essential to perform the mission. Two algorithms are well-known to determine the attitude through two or more vector observations. One is deterministic method such as TRIAD algorithm, the other is optimal method such as QUEST algorithm. This Paper suggests the idea to improve performance of the TRIAD algorithm and to determine the attitude by combination of different sensors. First, we change the attitude matrix to Euler angle instead of using orthogonalization method and also use covariance in place of variance, then apply an unbiased minimum variance formula for more accurate solutions. We also suggest the methodology to determine the attitude when more than two measurements are given. The performance of the Averaging TRIAD algorithm upon the combination of different sensors is analyzed by numerical simulation in terms of standard deviation and probability.

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I))

  • 김형문;이상길;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In the present paper an attempt has been made to simulate the secondary injection-primary flow interaction in the conical rocket nozzle and to derive the performance of secondary injection thrust vector control(SITVC) system. Complex three-dimensional flowfield induced by the secondary injection is numerically analyzed by solving unsteady three-dimensional Euler equation with Beam and Warming's implicit approximate factorization method. Emphasized in the present study is the effect of secondary injection such as secondary mass flow rates and the momentum of secondary/primary nozzle flow mass rates upon the gross system performance parameters such as thrust ratio, specific impulse ratio and deflection angle. The results obtained in terms of system performance parameters show that lower secondary mass flow rate is advantageous for to reduce secondary specific impulse loss. It is further found that the nozzle with secondary jet injected downstream and interacting with fast primary flow is preferable for efficient and stable SITVC over the wide range of use with the penalty of side specific impulse loss.

  • PDF

Calculation of Trajectory for High Energy Electrons in Water under Strong Magnetic Fields (강자기장이 인가된 물 속에서 고에너지 전자의 궤적 계산)

  • Kim Jeung Kee;Oh Young Kee;Shin Kyo Chul;Kim Ki Hwan;Kim Jhin Kee;Kim Sung Kyu;Ro Tae Ik;Kim Jin Young;Ji Young Hun;Jeong Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.121-127
    • /
    • 2004
  • The trajectories for high-energy electrons in water under magnetic fields were calculated approximately by numerical method. A differential equation for electrons under magnetic field was built and the calculation code was devised by Euler method. Using the code, the trajectories for electrons with energies of 3, 5, 10, and 15 MeV in water were calculated in the presence of magnetic fields parallel and perpendicular to the incident electrons. Since we considered only the energy loss and the directional change for primary electrons, there are errors in this calculation. However, based on the results we were able to explain the variation of dose distributions by the external magnetic fields in water.

  • PDF