• Title/Summary/Keyword: 오염취약도

Search Result 203, Processing Time 0.029 seconds

Analyzing Vulnerable Software Code Using Dynamic Taint and SMT Solver (동적오염분석과 SMT 해석기를 이용한 소프트웨어 보안 취약점 분석 연구)

  • Kim, Sungho;Park, Yongsu
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.257-262
    • /
    • 2015
  • As software grows more complex, it contains more bugs that are not recognized by developers. Attackers can then use exploitable bugs to penetrate systems or spread malicious code. As a representative method, attackers manipulated documents or multimedia files in order to make the software engage in unanticipated behavior. Recently, this method has gained frequent use in A.P.T. In this paper, an automatic analysis method to find software security bugs was proposed. This approach aimed at finding security bugs in the software which can arise from input data such as documents or multimedia. Through dynamic taint analysis, how input data propagation to vulnerable code occurred was tracked, and relevant instructions in relation to input data were found. Next, the relevant instructions were translated to a formula and vulnerable input data were found via the formula using an SMT solver. Using this approach, 6 vulnerable codes were found, and data were input to crash applications such as HWP and Gomplayer.

Projection of Climate Change Impact on Water Environment in Multipurpose Dam Reservoirs according to Climate Change (기후변화에 따른 다목적댐 저수지의 수환경 취약성 전망)

  • Kang, Boo-Sik;Kim, Seong-Joon;Chung, Se-Woong;Kim, Young-Do;Shin, Jae-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.247-247
    • /
    • 2012
  • 기후변화로 나타나게 될 댐 저수지의 수질 및 생태환경 변화에 대한 분석은 국가 수자원관리 측면에서 우선적으로 대비해야할 중요한 문제로써, 수자원을 안정적이고 효과적으로 관리 및 활용하기 위해서 기후변화로 인한 댐 저수지의 수환경 변화의 정확한 분석과 취약성 평가가 필수적이다. 이러한 기후변화로 인한 신뢰성 있는 영향평가를 위해서는 기후변화시나리오 분석, 댐 유역의 오염물질 유출을 시 공간적으로 해석할 수 있는 유역 모델과 댐저수지로 유입된 이후 오염물질 거동 분석을 위한 저수지 모델이 필요하며, 특히 다양한 기후변화 시나리오하에서의 미래 전망과 발생가능한 취약성을 예측 및 평가하는 기술을 필요로 한다. 본 연구에서는 총 7개의 다목적댐 유역과 저수지에 대하여 기후변화로 인한 신뢰성이 있는 영향평가를 위해서 기후변화 시나리오의 상세화를 통한 상세지역의 기후예측, 댐 유역 모형에서의 유출, 토사 및 오염물질예측과 저수지모형을 통한 미래의 저수지내 오염/영양물질순환 및 분포예측을 통해 기후변화에 의한 다목적댐 취약성을 평가하고자 한다. 총 7개의 다목적댐 유역의 기후변화 시나리오 적용에 따른 유출변화 및 하천수질 전망을 위해 인공신경망 방법에 의해 상세화된 기후자료를 검보정된 SWAT 모형에 적용하였다. 이때, 기준년에 해당하는 Baseline 기간은 인공신경망 학습기간(1990-2010)과 동일하게 모의하였으며, 미래 분석기간 역시 마찬가지로 2011-2040, 2041-2070, 2071-2100의 3개 기간으로 구분하였다. 또한, 미래 전망결과에 대한 분석은 각 30년 일별 모의결과에 대한 월 평균, 계절 평균으로 분석하였다. 유출변화 전망은 댐유역별 월별 총유입량 변화와 함께 유황분석을 통해 미래 댐유입량에 대한 규모 및 변동성 분석을 실시하였으며, 하천수질 변화 전망을 위해 호소유입 하천의 Sediment, TN, TP 월별 오염부하량 변화 분석을 실시하였다. 또한 댐유입 총량에 대한 변동성을 분석한 후, 저수지수질모델의 입력경계조건에 해당하는 각 댐저수지 유입 하천의 미래 유출량 및 수질농도 변화를 분석하였다.

  • PDF

A Joint Application of DRASTIC and Numerical Groundwater Flow Model for The Assessment of Groundwater Vulnerability of Buyeo-Eup Area (DRASTIC 모델 및 지하수 수치모사 연계 적용에 의한 부여읍 일대의 지하수 오염 취약성 평가)

  • Lee, Hyun-Ju;Park, Eun-Gyu;Kim, Kang-Joo;Park, Ki-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.77-91
    • /
    • 2008
  • In this study, we developed a technique of applying DRASTIC, which is the most widely used tool for estimation of groundwater vulnerability to the aqueous phase contaminant infiltrated from the surface, and a groundwater flow model jointly to assess groundwater contamination potential. The developed technique is then applied to Buyeo-eup area in Buyeo-gun, Chungcheongnam-do, Korea. The input thematic data of a depth to water required in DRASTIC model is known to be the most sensitive to the output while only a few observations at a few time schedules are generally available. To overcome this practical shortcoming, both steady-state and transient groundwater level distributions are simulated using a finite difference numerical model, MODFLOW. In the application for the assessment of groundwater vulnerability, it is found that the vulnerability results from the numerical simulation of a groundwater level is much more practical compared to cokriging methods. Those advantages are, first, the results from the simulation enable a practitioner to see the temporally comprehensive vulnerabilities. The second merit of the technique is that the method considers wide variety of engaging data such as field-observed hydrogeologic parameters as well as geographic relief. The depth to water generated through geostatistical methods in the conventional method is unable to incorporate temporally variable data, that is, the seasonal variation of a recharge rate. As a result, we found that the vulnerability out of both the geostatistical method and the steady-state groundwater flow simulation are in similar patterns. By applying the transient simulation results to DRASTIC model, we also found that the vulnerability shows sharp seasonal variation due to the change of groundwater recharge. The change of the vulnerability is found to be most peculiar during summer with the highest recharge rate and winter with the lowest. Our research indicates that numerical modeling can be a useful tool for temporal as well as spatial interpolation of the depth to water when the number of the observed data is inadequate for the vulnerability assessments through the conventional techniques.

Assessment of Groundwater Contamination Vulnerability by Geological Characteristics of Unsaturated Zone (불포화대 지질특성에 따른 지하수오염취약성 평가)

  • Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.727-740
    • /
    • 2018
  • The media in the undersaturated zone is defined as the uppermost layer of the water table at which the groundwater is unsaturated or saturated discontinuously. The properties of the unsaturated zone can affect the reduction of contaminants that flow from the lower part of soil to the water table. In recent, there have been problems in evaluating groundwater contaminations vulnerability because weighted value for permeability is given, regardless of anisotropy and heterogeneity in the unsaturated media. Geological media have various ranges of permeability. When applying the weighted value, representative of permeability for grain sizes standardized, to construction of contamination vulnerability, it will produce more exaggerated result than the case that considers unsaturated geological properties. In this study, we performed laboratory column tests considering two sets of the unsaturated layers in order to investigate the permeability in anisotropic unsaturated zone with anisotropy. On the basis of the tests, average permeability coefficients were calculated considering the properties of unsaturated media obtained from drill cores in the field. The final contamination vulnerability map constructed shows that the contamination vulnerability map applying the properties of geological media of the unsaturated zone coincides much better with the results measured in the field, compared to the case of contamination vulnerability considering the weighted value in the unsaturated zone.

Detecting Security Vulnerabilities in TypeScript Code with Static Taint Analysis (정적 오염 분석을 활용한 타입스크립트 코드의 보안 취약점 탐지)

  • Moon, Taegeun;Kim, Hyoungshick
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.2
    • /
    • pp.263-277
    • /
    • 2021
  • Taint analysis techniques are popularly used to detect web vulnerabilities originating from unverified user input data, such as Cross-Site Scripting (XSS) and SQL Injection, in web applications written in JavaScript. To detect such vulnerabilities, it would be necessary to trace variables affected by user-submitted inputs. However, because of the dynamic nature of JavaScript, it has been a challenging issue to identify those variables without running the web application code. Therefore, most existing taint analysis tools have been developed based on dynamic taint analysis, which requires the overhead of running the target application. In this paper, we propose a novel static taint analysis technique using symbol information obtained from the TypeScript (a superset of JavaScript) compiler to accurately track data flow and detect security vulnerabilities in TypeScript code. Our proposed technique allows developers to annotate variables that can contain unverified user input data, and uses the annotation information to trace variables and data affected by user input data. Since our proposed technique can seamlessly be incorporated into the TypeScript compiler, developers can find vulnerabilities during the development process, unlike existing analysis tools performed as a separate tool. To show the feasibility of the proposed method, we implemented a prototype and evaluated its performance with 8 web applications with known security vulnerabilities. We found that our prototype implementation could detect all known security vulnerabilities correctly.

Estimation of Source Contribution for Ambient Aerosol Mass at Tokchok Island on the Yellow Sea (황해상 덕적도 대기 분진오염원의 기여도 추정)

  • 윤용석;김동술;배귀남;이승복;문길주
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.189-190
    • /
    • 2001
  • 서쪽으로 중국대륙과 동쪽으로 한반도로 둘러싸여 있는 황해는 수심이 얕은 대륙붕 구조를 하고 있어 각종 오염에 취약하다. 황해변의 중국 동부쪽 대규모 공업단지들과 한국의 관장, 대불단지, 시화단지 등 대규모 공단에서 배출된 오염물짙이 황해를 오염시키고 있다. 한국과학기술연구원에서는 황해오염을 조사하기 위하여 황해를 대표할 수 있는 도서로 인천에서 남서쪽으로 약 49 km 떨어져 있는 덕적도에 측정소를 구축하여 1999년부터 대기오염물질을 측정하고 있다 (Lee at al., 2001). (중략)

  • PDF

Lake Vulnerability Assessment (호소의 취약성 평가)

  • Kim, Eung-Seok;Yoon, Ki-Yong;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6877-6883
    • /
    • 2014
  • The continuous social development has led to increasing pollution in lakes. This study proposed the LVRI (Lake Vulnerability Resilience Indicator) based on the vulnerability assessment of climate change for an environmental risk assessment in lakes sufferign water pollution in an integrated aspect of the characteristics in lake watersheds. A total of 11 representative assessment factors were selected and constructed for 6 lake basins in the Geum River Watershed to calculate the exposure, sensitivity and adaptation indicators in a vulnerability assessment classification system. The weight coefficients for assessment factors of the LVRI were also calculated using the Entropy method. This study also compared the rank results of the lake environmental risk with/without the weight coefficients of assessment factors for the practical application of the proposed lake environmental risk assessment method. The lake environmental risk results estimated in this study can be used for long-term water quality analysis and management in lakes.

Assessing Groundwater Vulnerability Using DRASTIC Method and Groundwater Quality in Changwon City (DRASTIC과 지하수 수질에 의한 창원시 지하수 오염취약성 평가)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Moo-Jin;Kim In-Soo;Hwang Han-Seok
    • Economic and Environmental Geology
    • /
    • v.37 no.6 s.169
    • /
    • pp.631-645
    • /
    • 2004
  • This study assesses groundwater vulnerability to contaminants in industrial and residential/commercial areas of the city of Changwon, using DRASTIC technique and groundwater data. The DRASTIC technique was originally applied to situations in which the contamination sources are at the ground surface, and the contaminants flow into the groundwater with infiltration of rainfall. Mostly the industrial area has higher DRASTIC indices than the residential/commercial area. However, a part of the residential/commercial area having much groundwater production and great drawdown is more contaminated in groundwater than other industrial and the residential/commercial areas even if it has lowest DRASTIC indices in the study area. It indicates that groundwater contamination in urban areas can be closely related to excessive pumping resulting in a lowering of the water level. The correlation coefficient between minimum DRASTIC indices and the degree of poor water quality for 10 districts is as low as 0.40. On the other hand, the correlation coefficients between minimum DRASTIC indices and the groundwater discharge rate, and between minimum DRASTIC indices and well distribution density per unit area are 0.70 and 0.87, respectively. Thus, to evaluate the potential of groundwater contamination in urban areas, it is necessary to consider other human-made factors such as groundwater withdrawal rate and well distribution density per unit area as well as the existing seven DRASTIC factors.

온양온천지역 지하수의 지화학적 특성이 주는 교훈: 과도한 채수로 인한 영향

  • 김강주;구민호;문상호;염병우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.36-39
    • /
    • 2002
  • 온양온천 지역 지하수에 대한 수질 조사결과, 심부 피압대수층에서 산출되는 온천수의 수질이 천층의 저온지하수에 강하게 영향을 받고 있음이 확인되었다. 본 연구에서는 이들 두 종류의 물 사이에서 매우 높은 상대적인 농도차이를 보이는 불소이온농도를 이용하여 천층지하수의 영향정도를 정량화할 수 있었다. 이 같은 방법으로 계산된 천층지하수 영향정도는 온천수취수정에 따라 다르게 나타나고 있었으나, 최소 10 %에서 최대 50%에 이르는 것으로 확인되었다. 이와 같은 관찰결과는 오염에 취약하지 않은 것으로 알려진 심부의 피압대수층도 과도한 양수가 이루어지게 되면 오염에 취약한 천층부의 지하수를 다량 심부로 유입시킴으로써, 점차 오염되어질 수 있음을 보여주는 것이다.

  • PDF

Evaluation of Non-point source Vulnerable Areas In West Nakdong River Watershed Using TOPSIS (TOPSIS를 이용한 서낙동강 유역 비점오염 취약지역 평가 연구)

  • KAL, Byung-Seok;PARK, Jae-Beom;KIM, Ye-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.26-39
    • /
    • 2021
  • This study investigated the characteristics of the watershed and pollutants in the Seonakdong River basin in the lower stream of the Nakdong River Water System, and evaluated the areas vulnerable to nonpoint pollution by subwatershed according to the TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution) method. The selection method consists of selection of evaluation factors, calculation of weights and selection of areas vulnerable to non-point pollution through evaluation factors and weights. The entropy method was used as the weight calculation method and TOPSIS, a multi-criteria decision making(MCDM) method was used as the evaluation method. Indicator data were collected as of 2018, and national pollution source survey data and national statistics were used. Most of the vulnerable watersheds were highly urbanized had a large number of residents and were evaluated as having a large land area among industrial facilities and site area rate. Through this study, it is necessary to approach a variety of weighting methodologies to assess the vulnerability of non-point pollution with high reliability, and scientific analysis of the factors that affect non-point pollution sources and consideration of the effects are necessary.