• Title/Summary/Keyword: 오염배출부하

Search Result 266, Processing Time 0.021 seconds

Effects of the Growth and Production Phase on Manure Production and Compositions in Holstein Dairy Cattle (젖소의 성장 및 생산 단계에 따른 분뇨배설량 및 성분의 변화)

  • Lee, Hyun-June;Lee, Wang-Shik;Kim, Hyeon-Shup;Cho, Won-Mo;Yang, Seung-Hak;Ki, Kwang-Seok;Kim, Sang-Bum;Park, Joong-Kook
    • Journal of Animal Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 2011
  • This work was carried out to investigate the quantity of manure excreta and characteristics in growth and production phase of Holstein dairy cattle. The average manure production of dairy cattle under condition of ad libitum feeding was 41.5 kg/head/day (feces 24.9, urine 16.4 kg). The average moisture contents of feces and urine were 85.0% and 93.9%, respectively. Water pollutant concentration, $BOD_5$, $COD_{Mn}$ and SS excreted from dairy cattle were 15,444 mg/${\ell}$, 53,159 mg/${\ell}$, and 40,528 mg/${\ell}$ in feces and 8,454 mg/${\ell}$1,116 mg/${\ell}$, and 962 mg/${\ell}$in urine, respectively. And The daily loading amount of $BOD_5$, $COD_{Mn}$, SS in dairy cattle manure were 523 g, 1,416 g and 1,025 g, respectively. N, P and K contents of manure produced by dairy cattle were 0.33, 0.49 and 0.20% in feces, and 1.02, 0.27 and 1.03 in urine, respectively. In the concentrations of mineral and heavy metal of manure, Ca, Na and Mg contents were 1.56, 0.24 and 0.69%, and Zn, Cu, Cr, Pb and As were 69.23, 19.14, 2.89, 7.73 and 2.94 ppm, respectively. In conclusion, Dairy farms can be estimated optimum nutrient and pollutant balance to effectively manage the manure produced.

Spatio-temporal Variation Analysis of Physico-chemical Water Quality in the Yeongsan-River Watershed (영산강 수계의 이화학적 수질에 관한 시공간적 변이 분석)

  • Kang, Sun-Ah;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.73-84
    • /
    • 2006
  • The objective of this study was to analyze long-term temporal trends of water chemistry and spatial heterogeneity for 10 sampling sites of the Yeongsan River watershed using water quality dataset during 1995 to 2004 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of biological oxygen demand (BOD), chemical oxygen demand (COD), conductivity, dissolved oxygen (Do), total phosphorus (TP), total nitrogen (TN) and total suspended solids (TSS), largely varied depending on the sampling sites, seasons and years. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summmer monsoon rain. Conductivity, used as a key indicator for a ionic dilution during rainy season, and nutrients of TN and TP had an inverse function of precipitation (absolute r values> 0.32, P< 0.01, n= 119), whereas BOD and COD had no significant relations(P> 0.05, n= 119) with rainfall. Minimum values in conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of total suspended solids (TSS) occurred during the period of summer monsoon. BOD values varied with seasons and the values was closely associated (r=0.592: P< 0.01) with COD, while variations of TN were had high correlations (r=0.529 : P< 0.01) with TP. Seasonal fluctuations of DO showed that maximum values were in the cold winter season and minimum values were in the summer seasons, indicating an inverse relation with water temperature. The spatial trend analyses of TP, TN, BOD, COD and TSS, except for conductivity, showed that the values were greater in the mid-river reach than in the headwater and down-river reaches. Conductivity was greater in the down-river sites than any other sites. Overall data of BOD, COD, and nutrients (TN, TP) showed that water quality was worst in the Site 4, compared to those of others sites. This was due to continuous effluents from the wastewater treatment plants within the urban area of Gwangju city. Based on the overall dataset, efficient water quality management is required in the urban area for better water quality.

Contamination of the Mushim-Cheon and its Countermeasure;II. The Status of the Seasonal and Hourly Contamination of the Water(1989${\sim}$1990)-Temperature, pH, DO, BOD, COD, SS, Turbidity, and BOD Load (무심천(無心川) 수질(水質) 오염(汚染) 실태(實態)와 그 방지책(防止策);II. 계절별(季節別) 및 시간별(時間別) 현황(現況) (1989-1990)-수온, pH, DO, BOD, COD, SS, 탁도 및 BOD 부하량(負荷量))

  • Lee, Jae-Koo;Kim, Hak-Nam;Kyung, Kee-Sung;Kwak, Hee-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.1
    • /
    • pp.33-49
    • /
    • 1991
  • In order to disclose the contamination of the Mushim-Cheon by pollutants and to establish the countermeasures, the water samples collected in November of 1989(lst sample), February(2nd), May(3rd) and August of 1990(4th) were analyzed to obtain the following results : 1. The water temperatures of the seasonal samples ranged from 8.6 to 16.2, 8.3 to 25.2, 18 to 26, and 24 to 32$^{\circ}C$, in the 1st, 2nd , 3rd, and 4th samples, respectively. 2. The pHs of all the samples ranged from 6.5 to 8.5. 3. In the 3rd sample, especially, DO was observed to fall down to 0.8 ppm at the downstream of St 13, which is not allowed even for agricultural use. 4. The BOD and COD values in sewers were much higher than those in the main stream, and especially the values of St 14-A reached 107-608 and 176-635 ppm, respectively, which far exceeded the limit of 40 ppm, the allowed value for the discharges from the disposal facilities. The SS value of St 14A ranged from 142 to 1, 900 ppm, which far exceeded the limit of 70 ppm, the allowed value for the discharges from the disposal facilities. 5. It turned out that the water quality of the Mushim-Cheon flowing through Cheong Ju was more worsened at sewers than the main stream, and at the downstream than the upstream of the surveyed area. Accordingly, the sewage disposal plant and the expansion of the disposal facilities are urgently needed.

  • PDF

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.

Comparative analysis of auto-calibration methods using QUAL2Kw and assessment on the water quality management alternatives for Sum River (QUAL2Kw 모형을 이용한 자동보정 방법 비교분석과 섬강의 수질관리 대안 평가)

  • Cho, Jae Heon
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.5
    • /
    • pp.345-356
    • /
    • 2016
  • In this study, auto-calibration method for water quality model was compared and analyzed using QUAL2Kw, which can estimate the optimum parameters through the integration of genetic algorithm and QUAL2K. The QUAL2Kw was applied to the Sum River which is greatly affected by the pollution loads of Wonju city. Two auto-calibration methods were examined: single parameter application for the whole river reach and separate parameter application for each reach of multiple reaches. The analysis about CV(RMSE) and fitness of the GA show that the separate parameter auto-calibration method is better than the single parameter method in the degree of precision. Thus the separate parameter auto-calibration method is applied to the water quality modelling of this study. The calibrated QUAL2Kw was used for the three scenarios for the water quality management of the Sum River, and the water quality impact on the river was analyzed. In scenario 1, which improve the effluent water quality of Wonju WWTP, BOD and TP concentrations of the Sum River 4-1 station which is representative one of Mid-Watershed, are decreased 17.7% and 29.1%, respectively. And immediately after joining the Wonjucheon, BOD and TP concentrations are decreased 50.4% and 40.5%, respectively. In scenario 2, Wonju water supply intake is closed and multi-regional water supply, which come from other watershed except the Sum River, is provided. The Sum River water quality in scenario 2 is slightly improved as the flow of the river is increased. Immediately after joining the Wonjucheon, BOD and TP concentrations are decreased 0.18mg/L and 0.0063mg/L, respectively. In scenario 3, the water quality management alternatives of scenario 1 and 2 are planned simultaneously, the Sum River water quality is slightly more improved than scenario 1. Water quality prediction of the three scenarios indicates that effluent water quality improvement of Wonju WWTP is the most efficient alternative in water quality management of the Sum River. Particularly the Sum River water quality immediately after joining the Wonjucheon is greatly improved. When Wonju water supply intake is closed and multi-regional water supply is provided, the Sum River water quality is slightly improved.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.