• Title/Summary/Keyword: 오염배출부하

Search Result 266, Processing Time 0.031 seconds

Optimum Configuration, Filter Media Depth and Wastewater Load of Small-scale Constructed Wetlands for Treating the Hydroponic Waste Solution in Greenhouses (시설하우스 폐양액 처리를 위한 소형 인공습지의 최적 조합방법, 여재깊이 및 폐양액 부하량)

  • Park, Woo-Young;Seo, Dong-Cheol;Lim, Jong-Sir;Park, Seong-Kyu;Cho, Ju-Sik;Heo, Jong-Soo;Yoon, Hae-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.217-224
    • /
    • 2008
  • To obtain optimum configuration, depth and load of constructed wetlands(CWs) for treating of hydroponic waste solution(HWS) which was produced in greenhouses, the study was conducted with 4 kinds of combined systems such as Vertical flow(VF)-Horizontal flow(HF), VF-VF, HF-VF and HF-HF CWs. In four configurations of CWs, the treatment efficiency of pollutants from HWS under depth of HF and VF beds, HWS loading and HWSs were investigated. Removal rate of pollutants under different depth of VF and HF in 2-stage hybrid CWs was in the order of 50 cm < 70 cm regardless of CWs configuration. Removal rate of pollutants under HWS loading in 2-stage hybrid CWs was in the order of $150L\;m^{-2}\;day^{-1}{\fallingdotseq}300L\;m^{-2}\;day^{-1}\;>\;450L\;m^{-2}\;day^{-1}$. The optimum depth and HWS loading were 70 cm and $300L\;m^{-2}\;day^{-1}$ in four configurations of CWs, respectively. Using this optimum condition, for various HWSs (cucumber, paprika and strawberry HWS), removal rate of pollutants in HF-HF CWs was higher than that in HF-VF CWs. Optimum configuration of 2-stage hybrid CWs for treating hydroponic waste solution in greenhouses was found out to be HF-HF CWs. Therefore, under the optimum conditions, removal rate of BOD, COD, SS, T-N and T-P in HF-HF CWs were 84, 81, 84, 51 and 93%, respectively.

Comparison of Algal Growth Kinetics using Reclaimed Wastewaters from Various Treatment Processes (다양한 수질정화 공정 별 하수처리수 재이용수의 조류성장 비교)

  • Joo, Jin-Chul;Seo, Sou-Hyun;Song, Ho-Myeon;Kim, Il-Ho;Ahn, Chang-Hyuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.309-309
    • /
    • 2011
  • 지구온난화와 도시기후 변화에 대응하기 위해 자연의 생태적 기능을 복원하고 환경에 대한 오염부하를 저감하여 도시 환경의 건강성과 지속성을 높이기 위해 도심 내 물순환시스템(urban water circulating system)의 구축이 요구된다. 즉, 물순환시스템을 활용하여 도심 내 다양한 수원(생태하천/호수 유지용수, 하수처리수, 우수, 지하수 등)을 네트워크 및 통합 관리하여 도시 내 물순환의 건전성과 수자원의 재이용률을 향상시킬 수 있다. 이를 위해서 연중 발생량이 일정하고 막대한(66.4억톤/년, 2009년 기준) 하수처리수 방류수는 고도처리를 통해 수질이 양호하며 안정적인 대체 수자원으로 고려된다. 또한, 하수처리수의 재이용은 공공수역으로 배출되는 오염부하량의 총량 삭감 및 상수사용량의 절감과 수자원을 효율적으로 이용한다는 면에서 최근 재이용 사례가 증가하고 있는 추세이다. 그러나, 도심 내 친수공간(생태하천/호수)은 저류수량에 비해 유입수량이 적어 체류시간이 비교적 장시간이고, 이로 인해 부영양화가 쉽게 발생해 수질이 악화된다. 따라서, 본 연구에서는 하수처리수 재이용수를 도심 내 친수공간의 유지용수로 활용 시, 수질정화공정(응집 후 여과, 응집 후 여과+한외여과, 응집 후 여과+한외여과+역삼투 공정)이 친수공간 내 조류성장에 미치는 영향을 파악하기 위해, 하수처리수 재이용수 pilot plant의 수질정화공정별 유출수를 활용해 M. aeruginosa를 시험조류로 조류성장(growth kinetics)을 조사하였다. 조류는 $5\times104$ cells/mL의 초기 농도로 접종하여 배양하였으며, 조류성장에 직접적인 제한인자인 용존반응성인의 농도에 따른 성장속도를 Monod와 변형 Monod Kinetics를 이용해 반포화상수(Ks)와 최대 성장속도(${\mu}$max)를 산정하였다. 실험결과, 역삼투 공정을 제외한 다른 수질정화공정은 비록 영양염류가 80~90% 이상 제거되어 수계의 화학적 성상이 변하였으나 조류성장역학의 변화는 통계학적 (p=0.05)으로 유의할만한 수준은 아닌 것으로 판명되었다. 또한, 수리학적 체류시간이 2주 이상이 될 경우, 역삼투 공정을 제외한 수질정화공정 별 유출수에서는 조류의 과다성장으로 인해 부영양화가 발생하는 것으로 판명되었다. 결론적으로 하수처리수 재이용수를 친수용수로 활용시, 조류성장을 방지하기 위하여 용존반응성인의 농도를 중점적으로 관리하는 수질정화공정 및 유지용수 공급방안을 고려해야하는 것으로 판단된다.

  • PDF

Estimation of Production Unit Loads of Livestock Manure Based on TOC (TOC 기반 가축분뇨 발생 원단위 산정)

  • Lee, Yunhee;Kim, Yongseok;Park, Jihyung;Oa, Seong-Wook
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.403-409
    • /
    • 2014
  • Assessment of pollutant loads for livestock manure based on total organic carbon (TOC) is being required to apply TOC as an indicator in management of total maximum daily loads. In this study, TOC based unit loads of pig manure known as highly contributing to water pollution assessed. The concentration of pig manure, amount of manure production including cleaning water, and unit loads were investigated targeting 52 farms according to 4 major river basins, rearing form, farm scale, and piggery form. The manure production was highly generated in scraper type of piggery, in small scaled farm rearing sow, and in Han River basin and Nakdong River basin. The averaged manure production was 7.4 L/head/d in total river basins. Averaged concentrations were investigated as TOC 16,037 mg/L, BOD 10,559 mg/L, TN 4,145 mg/L, and TP 503 mg/L. Corresponding unit loads were assessed as TOC 117.1 g/head/d, BOD 77.1 g/head/d, TN 34.7 g/head/d, and TP 3.67 g/head/d.

Performance Evaluation of Bio-Membrane Hybrid Process for Treatment of Food Waste Leachate (음식물 침출수 청정화를 위한 파일롯 규모의 생물-분리막 복합공정의 성능 평가 연구)

  • Lee, Myung-Gu;Park, Chul-Hwan;Lee, Do-Hoon;Kim, Tak-Hyun;Lee, Byung-Hwan;Lee, Jin-Won;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.90-95
    • /
    • 2008
  • In this study, a combined process of sequential anaerobic-aerobic digestion (SAAD), fluidized-bed bioreactor (FBBR), and ultrafiltration (UF) for the treatment of small scale food waste leachate was developed and evaluated. The SAAD process was tested for performance and stability by subjecting leachate from food waste to a two-phase anaerobic digestion. The main process used FBBR composed of aerators for oxygen supply and fluidization, three 5 ton reaction chambers containing an aerobic mesophilic microorganism immobilized in PE (polyethylene), and a sedimentation chamber. The HRTs (hydraulic retention time) of the combined SAAD-FBBR-UF process were 30, 7, and 1 day, and the operation temperature was set to the optimal one for microbial growth. The pilot process maintained its performance even when the CODcr of input leachate fluctuated largely. During the operation, average CODcr, TKN, TP, and salt of the effluent were 1,207mg/L, 100mg/L, 50 mg/L, and 0.01 %, which corresponded to the removal efficiencies of 99.4%, 98.6%, 89.6%, and 98.5%, respectively. These results show that the developed process is able to manage high concentration leachate from food waste and remove CODcr, TKN, TP, and salt effectively.

Applicability Analysis of the HSPF Model for the Management of Total Pollution Load Control at Tributaries (지류총량관리를 위한 HSPF 모형의 적용성 분석)

  • Song, Chul Min;Kim, Jung Soo;Lee, Min Sung;Kim, Seo Jun;Shin, Hyung Seob
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The total maximum daily load (TMDL) implemented in Korea mainly manages the mainstream considering a single common pollutant and river discharge, and the river system is divided into unit watersheds. Changes in the water quality of managed rivers owing to the water quality management in tributaries and unit watersheds are not considered when implementing the TMDL. In addition, it is difficult to consider the difference in the load of pollutants generated in the tributary depending on the conditions of the water quality change in each unit watershed, even if the target water quality was maintained in the managed water system. Therefore, it is necessary to introduce the total maximum load management at tributaries to manage the pollution load of tributaries with a high degree of pollution. In this study, the HSPF model, a watershed runoff model, was applied to the target areas consisting of 53 sub-watersheds to analyze the effect of water quality changes the in tributaries on the mainstream. Sub-watersheds were selected from the three major areas of the Paldang water system, including the drainage basins of the downstream of the South Han-River, Gyeongan stream, and North Han-River. As a result, BOD ranged from 0.17 mg/L to 4.30 mg/L, and was generally high in tributaries and decreased in the downstream watershed. TP ranged from 0.02 mg/L - 0.22 mg/L, and the watersheds that had a large impact on urbanization and livestock industry were high, and the North Han-River basin was generally low. In addition, a pollution source reduction scenario was selected to analyze the change in water quality by the amount of pollution load discharged at each unit watershed. The reduction rate of BOD and TP according to the scenario changes was simulated higher in the watershed of the downstream of the North Han-River and downstream and midstream of the Gyeongan stream. It was found that the benefits of water quality reduction from each sub-watershed efforts to improve water quality are greatest in the middle and downstream of each main stream, and it is judged that it can be served as basic data for the management of total tributaries.

A Simulation on Water quality improvement by the effluent treatment of landbase-seawater culture system in the Kamak bay (육상축양장 배출수 처리에 의한 가막만의 수질개선 시뮬레이션)

  • Kim Dong-Myung;Jang Ju-Hyoung;Cho Hyeon-Seo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.1
    • /
    • pp.44-59
    • /
    • 2003
  • The three-dimensional eco-hydrodynamic model was applied to estimate the effect of water quality improvement by the effluent treatment of landbase-seawater culture system in the Kamak bay The computed residual currents were dominated southward flow at the northern narrow strait and eastward flow and clockwise water circulation at the mouth of the bay, strongly. The mean relative errors of DIP, DIN and COD between the simulated and observed results at 9 stations in the Kamak bay were shown 14.3%, 25.8% and 14.4%, respectively. There were high concentrations of DIP, DIN and COD at the northwestern bay which is influenced by pollution loads. The simulations were performed using an ecosystem model under the conditions of DIP 90%, DIN 80% and COD 60% treatment efficiency by the ozone treatment system of landbase-seawater culture system. As a results of simulation, the improvement effects of DIP, DIN and COD are 34.4~54.0% (average 46.4%), 0.4~25.4%(average 8.4%) and 15.6~29.4%(average 22.7%), respectively. Therefore the area of seawater quality grade I based on COD was extended in the bay.

  • PDF

Estimation of Stream Water Quality Changes Brought by a New Town Development (신도시 개발 후 도시하천의 장래수질 평가)

  • Park, Ji-Young;Lim, Hyun-Man;Yoon, Young-Han;Jung, Jin-Hong;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • Water pollution problems of urban rivers due to the urbanization and industrialization have been the subject of public attention. In particular, considering the fact that the characteristics of water cycle of each basin change dramatically through the development of new towns, a large number of concerns about future water quality have been raised. However, reasonable measures to predict future water quality quantitatively have not been presented by this moment. In this study, by the linkage of annual unit load generation based on long-term monitoring results of the ministry of environment (MOE) to a semi-distributed rainfall runoff model, SWMM (Storm Water Management Model), we proposed a new methodology to estimate future water quality macroscopically and testified it to verify its applicability for the estimation of future water quality of a small watershed at G new town. As a result of the estimation using Y-EMC (Yearly based Event Mean Concentration), future water quality were simulated as BOD 18.7, T-N 16.1 and T-P 0.85 mg/L respectively which could not achieve the grade III of domestic river life guidance and these criteria could be satisfied by the reduction of domestic wastewater discharge load by over 80%. The results of this study are shown to be utilized for one of basic tools to estimate and manage water quality of urban rivers in the course of new town developments.

Characteristics and Assessment of Metal Pollution and their Potential Source in Stormwater Runoff from Shihwa Industrial Complex, Korea (시화산업단지 강우유출수 내 중금속 오염도 평가 및 오염원 추적 연구)

  • Lee, Jihyun;Jeong, Hyeryeong;Choi, Jin-Young;Ra, Kongtae
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.91-101
    • /
    • 2020
  • Stormwater runoff is known as a major non-point water pollution source that transports heavy metals, which have accumulated in road surface, to stream and coastal area. Dissolved and particulate metals in stormwater runoffs have been investigated to understand the outflow characteristics of heavy metals during rainfall events and to identify their pollution sources. The concentration of dissolved Co and Ni decreased after the outflow with high concentrations at the beginning of the rainfall, and other metals showed different characteristics depending on the rainfall and rate of discharge. Particulate metals showed a similar trend with the temporal variation of suspended solids concentration in stormwater runoffs. The results of geo-accumulation index (Igeo) indicated that the stormwater runoffs from industrial region were very highly polluted with Cu, Zn and Cd. As a result of comparing the metal concentrations of <125 ㎛ for road dust near the study area, Cu, Zn and Cd were originated from inside of metal manufacturing facilities rather than traffic activities at road surface and these metals accumulated on the surface area of facilities were transported to the water environments during stormwater event. The average discharged amounts of heavy metals for one rainfall event were Cr 128 g, Co 12.35 g, Ni 98.5 g, Cu 607.5 g, Zn 8,429.5 g, As 6.95 g, Cd 3.7 g, Pb 251.75 g, indicating that metal runoff loads in the stormwater runoffs are closely related to surrounding industry types.

Development of a Method for Estimating Non-Point Pollutant Delivery Load of Each Reference Flow with Combination of BASINS/HSPF (BASINS/HSPF와 연계한 유황별 비점유달부하량 산정방법 개발)

  • Lee, Yong-Woon;Song, Kwang-Duck;Lee, Jae-Choon;Yoon, Kwang-Sik;Rhew, Doug-Hee;Lee, Su-Woong;Lee, Shin-Hoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.175-184
    • /
    • 2010
  • The purpose of this study is to develop a method for estimating the non-point pollutant delivery load of each reference flow(flows of dry, low, normal, abundant and flood seasons) with combination of BASINS/HSPF. The effectiveness of this method is evaluated by applying it to the watershed of Dongbok stream. The flow, BOD and T-P reliability indices(RI) of the BASINS/HSPF for the watershed of Dongbok stream are 1.59, 1.41, 1.28, respectively, and thus the similarity between measured and estimated values is high. The non-point pollutant load delivery ratios of BOD and T-P for the flows of dry, low and normal seasons, which are estimated by such constructed BASINS/HSPF, are 0.36 and 1.09, 0.82 and 2.19, 6.02 and 16.90, respectively, as compared with daily average of non-point loads for a year. These results show that the non-point pollutant delivery load should be estimated and applied for each reference flow, and in this case the method for estimating the non-point pollutant delivery load of each reference flow can be useful.

Efficient Spent Sulfidic Caustic wastewater treatment using Adsorption Photocatalysis System (흡착광산화 시스템을 이용한 효과적인 SSC 페수처리)

  • Kim, Jong Kyu;Lee, Min Hee;Jung, Yong Wook;Joo, Jin Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.520-520
    • /
    • 2016
  • 석유 화학공장에서 발생하는 spent sulfidic caustic (SSC) 폐수는 액화석유가스(LPG)나 천연가스(NG)의 정제과정에서 발생되는 것으로 고농도의 sulfide와 cresylic, phenolic 그리고 mercaptan 등이 포함된 독성과 냄새를 유발하는 물질이다. 이러한 물질들은 LPG나 NG의 정제과정에서 높은 산도를 가진 휘발성 황화합 물질들을 제거하기 위해 사용된 NaOH가 $H_2S$와 반응하여 발생하는 것이다. 진한 갈색 또는 검은색을 띄는 SSC 폐수는 12 이상의 높은 pH를 가지고 있으며 5~12 wt%의 높은 염분도를 가지고 있다. 또한 강한 부식성과 독성을 가진 황화합물의 농도가 1~4 wt%이며, 방향족 탄화수소 물질 (i.e. methanethiol, benzene, tolune and phenol)들도 다량 함유되어 있다. 따라서 이러한 유해 물질들은 기존의 하수처리 공정으로 방류하기 전에 완벽하게 처리해야만 하수처리 공정의 오염 부하량을 줄일 수 있다. 습식산화공정은 SSC 폐수를 처리하기 위해 흔히 사용되고 있는 물리-화학적 처리 공정이지만 고비용, 고에너지가 필요하며, 고온 및 고압에서만 작동되어 안전상의 문제점을 갖고 있다. 또한 습식산화공정을 거친 폐수는 배출허용기준을 만족하기 위해 생물학적 2차 처리가 반드시 필요하다. 철-과산화수소를 이용하는 펜톤산화 공정, 그리고 sulfide를 sulfate로 전환시키는 생물학적 처리 공정은 황화합물의 완전한 무기물화가 힘들며, 현장 적용 시 기술적 경제적 부담이 크다. 이러한 단점을 극복하고, SSC 폐수를 효과적으로 처리하기 위해 본 연구는, 높은 흡착력과 광산화력을 가진 흡착광산화 반응 시스템(Adsorption Photocatalysis System, APS)을 개발하였다. APS는 SSC 폐수를 시스템 내부로 유입하여 수중의 오염물질을 흡착광산화제로 구성된 반응구조체가 흡착하고, 흡착된 오염물질을 UV에너지와 이산화티타늄 광촉매의 광화학반응에 의해 최종적으로 무해한 물질로 환원시키는 폐수처리시스템이다. APS의 반응구조체는 태양에너지 및 인공에너지원에 의해 활용 가능하며, 난분해성 유기화합물질을 물과 이산화탄소로 분해할 수 있는 친환경적이고 경제적인 소재로서 널리 쓰이고 있는 이산화티타늄 광촉매와 화력발전소의 높은 소성온도에 의해 연소된 후 발생되는 bottom ash를 이산화티타늄의 지지체로 사용하여 높은 흡착력과 광촉매 산화력을 가진 복합물이다. 개발된 APS에 의해 SSC 폐수를 처리한 결과, COD 86.1%, 탁도 98.4%, sulfide 99.9%의 높은 처리효율을 보여주고 있다. 따라서 본 연구를 통해 개발된 APS는 강한 부식성과 독성 그리고 높은 농도를 가지고 있는 SSC 폐수를 효과적으로 처리할 수 있다.

  • PDF