• Title/Summary/Keyword: 오염물질 유출

Search Result 699, Processing Time 0.032 seconds

Comparison of heavy metal uptake of LID and roadside plants (도로변 및 LID 시설 식재 식물의 중금속 축적량 비교)

  • Lee, YooKyung;Choi, Hyeseon;Reyes, Nash Jett;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.44-53
    • /
    • 2021
  • Urban stormwater runoff contains heavy metals that accumulate in on-site treatment systems, thus resulting to facility deterioration and maintenance problems. In order to resolve these problems, low impact development (LID) technologies that promote natural materials circulation are widely used. LID facilities are capable of treating heavy metals in the runoff by means of plant uptake; however, the uptake or phytoremediation capabilities of plants have not been studied extensively, making it difficult to select the most suitable plant species for a certain LID design. This study investigated the vegetative components of an LID facility, roadside plants, and plants in landscape areas with different heavy metal exposure and frequency to determine the uptake capabilities of different plant species. The plants harvested inside the LID facilities and roadsides with high vehicular traffic exhibited greater heavy metal concentrations in their tissues as compared with the plants in landscape areas. Generally, the accumulation of heavy metals in the plant tissues were found to be influenced by the environmental characteristics (i.e. influent water quality, air pollution level, etc.). Dianthus, Metasequoia, Rhododendron lateritium, and Mugwort were found to be effective in removing Zn in the urban stormwater runoff. Additionally, Dianthus, Metasequoia, Mugwort, and Ginkgo Biloba exhibited excellent removal of Cu. Cherry Tree, Metasequoia, and mugwort efficiently removed Pb, whereas Dianthus was also found to be effective in treating As, Cr, and Cd in stormwater. Overall, different plant species showed varying heavy metal uptake capabilities. The results of this study can be used as an effective tool in selecting suitable plant species for removing heavy metals in the runoff from different land use types.

Development of Various Pilot Scale's Ultrasound Systems and Sonodegradation of Naphthalene in Water (다양한 형태의 Pilot Scale 초음파 시스템 개발 및 나프탈렌 분해효율 검증)

  • Park, Jong-Sung;Lee, Ha-Yun;Han, Jong-Hun;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-288
    • /
    • 2011
  • Recently, researches that a variety of contaminants in water are removed by sonolysis technology with oxidation and pyrolysis process from cavitation were conducted. However, there are few studies for sonochemical treatment by a pilot-scale ultrasound system. This research focused on developing pilot-scale ultrasound systems, which could be an continuously effective treatment for a large volumes of contaminants, and demonstrating the feasibility of utilizing these systems to remove naphthalene from groundwater. V-120 type reactor was found to be 1.4~2.2 times higher effective than the normal type. A total of three different pilot scale's systems consisted of installing effluent and irrigation water in order to be a continuos system, including supplemental additives, and applying a V-120 type reactor and a external cooling cycle system. Naphthalene levels treated by three systems were lower than a recommended guideline of naphthalene for drinking water in EPA. Especially, the naphthalene removal efficiencies of PS1 and PS2 systems were over 97%. The pilot-scale continuous ultrasound clean-up system delivered over 84~95% naphthalene removal efficiency for treatment of 10~20 liter of groundwater. In addition, the ultrasound system could be successfully applied to the conditions of artificial and genuine groundwater contaminated with naphthalene.

Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon (영가철이 고정된 입상활성탄 제조를 위한 최적 합성조건 도출)

  • Hwang, Yuhoon;Mines, Paul D.;Lee, Wontae;Andersen, Henrik R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.521-527
    • /
    • 2016
  • Nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, however, the nano size should be of concern when nZVI is considered for water treatment, due to difficulties in recovery. The loss of nZVI causes not only economical loss, but also potential risk to human health and environment. Thus, the immobilization onto coarse or structured support is essential. In this study, two representative processes for nZVI immobilization on granular activated carbon (GAC) were evaluated, and optimized conditions for synthesizing Fe/GAC composite were suggested. Both total iron content and $Fe_0$ content can be significantly affected by preparation processes, therefore, it was important to avoid oxidation during preparation to achieve higher reduction capacity. Synthesis conditions such as reduction time and existence of intermediate drying step were investigated to improve $Fe_0$ content of Fe/GAC composites. The optimal condition was two hours of $NaBH_4$ reduction without intermediate drying process. The prepared Fe/GAC composite showed synergistic effect of the adsorption capability of the GAC and the degradation capability of the nZVI, which make this composite a very effective material for environmental remediation.

Characterization and Seawater Filtration Performance of Commerical Microfiltration and Ultrafiltration Membranes (상업용 정밀여과/한외여과막의 특성 분석 및 해수 여과 성능 평가)

  • Choi, Changkyoo;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.542-547
    • /
    • 2017
  • This paper was to analyze the membrane characterization of hydrophilicity, surface morphology and membrane chemical anlysis of three commercial microfiltration/ultrafiltration membranes, and evaluate the filtration performance of a seawater to assess the availability for pretreatment of desalination process. From the results of contact angle, Mem-3, fabricated with polyacrylonitrile, was highly hydrophilic. It find out that Mem-3 has more anti-biofouling property. In Field emission scanning electron microscope (FESEM), Mem-1 (polyethylene) and Mem-2 (Polyvinylidenefluoride) showed the sponge-like shape and Mem-3 showed finger-like shape. Membrane chemical analysis by energy dispersive spectrometer (EDS) presented that Mem-2 was mostly fluoride and Mem-3 had s high ratio of N (32.47%) due to the nitrile group. The permeation flowrate per time on suction pressures using deionized water (D.I. water) tends that permeation rate of Mem-3 more increased when the pressure was increased compared to other membranes. From the results of turbidity and total suspended solids (TSS) removal, turbidity of permeate was 0.191 NTU to 0.406 NTU and TSS was 2.2 mg/L to 3.0 mg/L in all membranes, indicating that it was not suitable for the pretreatment of seawater desalination by short-term experiments.

Assessment of Water Pollution by Discharge of Abandoned Mines (휴폐광산 지역에서 유출되는 하천수의 오염도 평가)

  • Kim Hee-Joung;Yang Jay-E.;Ok Yong-Sik;Lee Jai-Young;Park Byung-Kil;Kong Sung-Ho;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.25-36
    • /
    • 2005
  • Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy. Thus these disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. Acid mine drainage (AMD) and waste water effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of Total Dissolved Solids (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. Concentrations of water soluble heavy metals in the Okdong streams were in the orders of Fe>Al>Mn>Zn>Cu>Pb>Cd, indicating Fe from the AMD and waste water effluents contributed greatly to the quality of water and soil in the lower watershed of Okdong stream. Copper concentrations in the effluents from the tile drainage of mine tailings dams were highest during the raining season. Water Pollution Index (WPI) of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailings dams and coal mines flowed into main stream were in the WPI ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9. These results indicated that mining wastes such as AMD and effluents from the closed mines were the major source to water pollution at the Okdong stream areas.

Nitrogen Removal in Column Wetlands Packed with Synthetic Fiber Treating Piggery Stormwater (축산단지 강우 유출수 처리를 위한 합성섬유충진 습지의 질소제거에 관한 연구)

  • Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • A set of lab-scale polymer synthetic fiber packed column wetlands composing three columns (CW1, CW2 and CW3) with different hydraulic regimes, recirculation frequencies and pollutant loading rates, were operated in 2012. Synthetic fiber tested as an alternative wetland medium for soil mixture or gravel which has been widely used, has very high pore size and volume, so that clogging opportunity can be greatly avoided. The inflow to the wetland was artificial stormwater. All the wetlands achieved effective removal of TSS (94%~96%), TCOD (68%~73%), TN (35%~58%), TKN (62%~73%) and NH4-N (85%~ 99%). Particularly, it was observed that COD was released from the fiber during one distinct period in all wetlands. This was probably due to the degradation of polymer fiber, and the released organic matters were found to serve as carbon source for denitrification. In addition, with longer retention time and frequent recirculation, lower effluent concentration was observed. With higher pollutant loading rate, higher nitrification and denitrification rates were achieved. However, although organic matters were released from the fiber, the lack of carbon source was still the limiting factor for the system since the release persisted only for 40 days.

Comparative Analysis of SWAT Generated Streamflow and Stream Water Quality Using Different Spatial Resolution Data (SWAT모형에서 다양한 해상도에 따른 수문-수질 모의결과의 비교분석)

  • Park, Jong-Yoon;Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.102-106
    • /
    • 2008
  • This study is to evaluated the impact of varying spatial resolutions of DEM (2 m, 10 m, and 30 m), land use (QuickBird, 1/25,000 and Landsat), and soil data (1/25,000 and 1/50,000) on the uncertainty of Soil and Water Assessment Tool (SWAT) predicted streamflow, sediment, T-N, and T-P transport in a small agricultural watershed ($1.21\;km^2$). SWAT model was adopted and the model was calibrated for a $255.4\;km^2$ watershed using 30 m DEM, Landsat land use, and 1/25,000 soil data. The model was run with the combination of three DEM, land use, and soil map respectively. The SWAT model was calibrated for 2 years (1999-2000) using daily streamflow and monthly water quality (SS, T-N, T-P) records from 1999 to 2000, and verified for another 2 years (2001-2002). The average Nash and Sutcliffe model efficiency was 0.59 for streamflow and the root mean square error were 2.08, 4.30 and 0.70 tons/yr for sediment, T-N and T-P respectively. The hydrological results showed that output uncertainty was biggest by spatial resolution of land use. Streamflow increase the watershed average CN value of QucikBird land use was 0.4 and 1.8 higher than those of 1/25,000 and Landsat land use caused increase of streamflow.

  • PDF

An Evaluation of the Environmental Effects of Marine Cage Fish Farms: I. Estimation of Impact Region and Organic Carbon Cycling in Sediment Using Sediment Oxygen Consumption Rates and Macrozoobenthos (해상 어류가두리양식장의 환경영향평가: I. 퇴적물 산소소모율 및 저서동물을 이용한 유기물 오염영향권 추정 및 유기탄소 순환)

  • 이재성;정래홍;김기현;권정노;이원찬;이필용;구준호;최우정
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.1
    • /
    • pp.30-39
    • /
    • 2004
  • In order to understand the environmental impact of marine cage fish farms, we measured the vertical fluxes of particulate to the sediment, the distribution of organic carbon in core samples, sediment oxygen consumption rate (SOD), and macrobenthos with increasing distance from a fish cage in Miruk island located in Tongyong. The experiment was performed in August 2003. Measured values gradually decreased with distance, indicating that the organic matter in the sediment derived from the fish farm. The dominant macrobenthos species were Tharyx mulifilis, Lumbrineris longifolia, Sigambra tentaculata, and Capitella capitata, occupying 88% of the total population. Capirella capirata, an opportunistic polychaete species, were especially abundant between 0 to 5 m radius range. The estimated impact regions of organic matter enrichment based on sediment consilmption rates and compositions of macrobenthos were in good agreement. Most organic matter derived from the fish farm was deposited within a 10 m radius and then dispersed horizontally to nearby (at least 50 m) surface sediment. The vertical organic carbon fluxes to the sediment at the fish farm were higher by a factor of two than those outside the area. The remineralization organic carbon in the upper sediment layer was estimated to be 50% (1.07 g C m$^{-2}$ day$^{-1}$ ) at the fish farm. In contrast, outside the area, 30% (0.30 g C m$^{-2}$ day$^{-1}$ ) of organic carbon was recycled and the remaining 70% was deposited to the deep sediment layer.

Application of Subsurface Flow Wetland using the Phragmites australis for Water Quality Improvement of the Agricultural Reservoi (농업용 저수지 수질개선을 위한 지하흐름 갈대 인공습지의 적용)

  • Nam, Gui Sook;Pae, Yo Sop;Kim, Hyung Joong;Lee, Sang Joon;Lee, Gwang Sik
    • Journal of Wetlands Research
    • /
    • v.6 no.4
    • /
    • pp.59-69
    • /
    • 2004
  • Constructed wetlands are regarded as an important water treatment system for agricultural water quality improvement and management. The purpose of this study is to evaluate the application of subsurface flow wetland(SFW), using the Pharagmites australis as macrophytes, and to clarify the basic and essential factors to be considered in the construction and management of constructed wetlands. This study was carried out relatively short hydraulic residence time(HRT), 6hr ~ 72hr (3days), using eutrophic reservoir water with relatively low concentrations of influent and large quantity to be treated. The effluent satisfied the criteria of agricultural water quality. Removal efficiencies of Biochemical oxygen demand(BOD), Chemical oxygen demand(COD), Suspended solids(SS) and Chlorophyll a(Chl-a) were high in HRT 24hr, not any more significant increasement of removal efficiencies in HRT 48hr and 72hr. However, removal efficiencies of nitrogen and phosphorus increased as HRT increased, showing the highest efficiency at the 72hr of HRT in nitrogen, and 48hr in phosphorous. The SFW was very effective system for reservoir water quality improvement, and had the advantages of the reduction of purchasing cost to land required, lack of odors, and harmful insects, especially mosquito, the improvement of the scenic beauty and minimal risk of public exposure. Therefore, it was evaluated that the SFW was very available water treatment system for the water quality improvement of agricultural reservoir. However, it was need to consider with application of the SFW in high cost of construction and troublesome of management.

  • PDF

Behavior of heavy metals in the surface waters of the Lake Shihwa and its tributaries (시화호와 주변 하천 표층수중의 중금속 거동 특성)

  • Kim Kyung Tae;Lee Soo Hyung;Kim Eun Soo;Cho Sung Rok;Park Chung Kil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.1
    • /
    • pp.51-67
    • /
    • 2002
  • In order to understand behaviors of heavy metals around the artificial Lake Shihwa in the vicinity of Kyunggi Bay in Korea in relation with huge environmental changes due to construction of huge artificial lake, water samples were collected from Lake Shihwa and its tributaries from 1996 to 1998 and analyzed. Due to extreme pollutant discharge from various kinds of anthropogenic sources such as the Banweol and Shihwa Industrial Complexes and cities, the Shihwa and its tributaries have been polluted in waters with various heavy metals. The enrichment factors of particulate heavy metals in water of streams and storm sewers were very high. All of the heavy metals observed in the waters showed relatively high temporal and spatial variations. In surface waters of the lake during the desalination after the dike establishment, spatial distributions of heavy metal concentrations were mainly controlled by various biogeochemical factors as well as input of industrial and municipal wastewaters, while, physical mixing was minor factor Pb and Co showed a strong affinity to particle phase, however the affinity to dissolved phase was dominated in Ni, Cu and Cd. Water quality of the artificial Lake Shihwa has been deteriorated by direct discharge of untreated wastewater and heavy metals have been accumulated in the lake system. Therefore, luther environmental improvement plan should be programmed subsequently.

  • PDF