• Title/Summary/Keyword: 오버샘플링 기법

Search Result 57, Processing Time 0.022 seconds

An Efficient Identification Algorithm in a Low SNR Channel (저 SNR을 갖는 채널에서 효율적인 인식 알고리즘)

  • Hwang, Jeewon;Cho, Juphil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.790-796
    • /
    • 2014
  • Identification of communication channels is a problem of important current theoretical and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling. The method resorts to an adaptive filter with a linear constraint. In this paper, an approach is proposed that is based on decomposition. Indeed, the eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And we present an adaptive algorithm to solve this problem. Proposed technique shows the better performance than one of existing algorithms.

Method of Harmonic Magnitude Quantization for Harmonic Coder Using the Straight Line and DCT (Discrete Cosine Transform) (하모닉 코더를 위한 직선과 이산코사인변환 (DCT)을 이용한 하모닉 크기값 (Magnitude) 양자화 기법)

  • Choi, Ji-Wook;Jeong, Gyu-Hyeok;Lee, In-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.200-206
    • /
    • 2008
  • This paper presents a method of quantization to extract quantization parameters using the straight-line and DCT (Discrete Cosine Transform) for two splited frequency bands. As the number of harmonic is variable frame to frame, harmonics in low frequency band is oversampled to fix the dimension and straight-lines present a spectral envelope, then the discontinuous points of straight-lines in low frequency is sent to quantizer. Thus, extraction of quantization parameters using the straight-line provides a fixed dimension. Harmonics in high frequency use variable DCT to obtain quantization parameters and this paper proposes a method of quantization combining the straight-line with DCT. The measurement (If proposed method of quantization uses spectral distortion (SD) for spectral magnitudes. As a result, The proposed method of quantization improved 0.3dB in term of SD better than HVXC.

Application of Random Over Sampling Examples(ROSE) for an Effective Bankruptcy Prediction Model (효과적인 기업부도 예측모형을 위한 ROSE 표본추출기법의 적용)

  • Ahn, Cheolhwi;Ahn, Hyunchul
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.525-535
    • /
    • 2018
  • If the frequency of a particular class is excessively higher than the frequency of other classes in the classification problem, data imbalance problems occur, which make machine learning distorted. Corporate bankruptcy prediction often suffers from data imbalance problems since the ratio of insolvent companies is generally very low, whereas the ratio of solvent companies is very high. To mitigate these problems, it is required to apply a proper sampling technique. Until now, oversampling techniques which adjust the class distribution of a data set by sampling minor class with replacement have popularly been used. However, they are a risk of overfitting. Under this background, this study proposes ROSE(Random Over Sampling Examples) technique which is proposed by Menardi and Torelli in 2014 for the effective corporate bankruptcy prediction. The ROSE technique creates new learning samples by synthesizing the samples for learning, so it leads to better prediction accuracy of the classifiers while avoiding the risk of overfitting. Specifically, our study proposes to combine the ROSE method with SVM(support vector machine), which is known as the best binary classifier. We applied the proposed method to a real-world bankruptcy prediction case of a Korean major bank, and compared its performance with other sampling techniques. Experimental results showed that ROSE contributed to the improvement of the prediction accuracy of SVM in bankruptcy prediction compared to other techniques, with statistical significance. These results shed a light on the fact that ROSE can be a good alternative for resolving data imbalance problems of the prediction problems in social science area other than bankruptcy prediction.

Response Modeling with Semi-Supervised Support Vector Regression (준지도 지지 벡터 회귀 모델을 이용한 반응 모델링)

  • Kim, Dong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.125-139
    • /
    • 2014
  • In this paper, I propose a response modeling with a Semi-Supervised Support Vector Regression (SS-SVR) algorithm. In order to increase the accuracy and profit of response modeling, unlabeled data in the customer dataset are used with the labeled data during training. The proposed SS-SVR algorithm is designed to be a batch learning to reduce the training complexity. The label distributions of unlabeled data are estimated in order to consider the uncertainty of labeling. Then, multiple training data are generated from the unlabeled data and their estimated label distributions with oversampling to construct the training dataset with the labeled data. Finally, a data selection algorithm, Expected Margin based Pattern Selection (EMPS), is employed to reduce the training complexity. The experimental results conducted on a real-world marketing dataset showed that the proposed response modeling method trained efficiently, and improved the accuracy and the expected profit.

A probabilistic fragility evaluation method of a RC box tunnel subjected to earthquake loadings (지진하중을 받는 RC 박스터널의 확률론적 취약도 평가기법)

  • Huh, Jungwon;Le, Thai Son;Kang, Choonghyun;Kwak, Kiseok;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • A probabilistic fragility assessment procedure is developed in this paper to predict risks of damage arising from seismic loading to the two-cell RC box tunnel. Especially, the paper focuses on establishing a simplified methodology to derive fragility curves which are an indispensable ingredient of seismic fragility assessment. In consideration of soil-structure interaction (SSI) effect, the ground response acceleration method for buried structure (GRAMBS) is used in the proposed approach to estimate the dynamic response behavior of the structures. In addition, the damage states of tunnels are identified by conducting the pushover analyses and Latin Hypercube sampling (LHS) technique is employed to consider the uncertainties associated with design variables. To illustrate the concepts described, a numerical analysis is conducted and fragility curves are developed for a large set of artificially generated ground motions satisfying a design spectrum. The seismic fragility curves are represented by two-parameter lognormal distribution function and its two parameters, namely the median and log-standard deviation, are estimated using the maximum likelihood estimates (MLE) method.

Mitigating Data Imbalance in Credit Prediction using the Diffusion Model (Diffusion Model을 활용한 신용 예측 데이터 불균형 해결 기법)

  • Sangmin Oh;Juhong Lee
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.9-15
    • /
    • 2024
  • In this paper, a Diffusion Multi-step Classifier (DMC) is proposed to address the imbalance issue in credit prediction. DMC utilizes a Diffusion Model to generate continuous numerical data from credit prediction data and creates categorical data through a Multi-step Classifier. Compared to other algorithms generating synthetic data, DMC produces data with a distribution more similar to real data. Using DMC, data that closely resemble actual data can be generated, outperforming other algorithms for data generation. When experiments were conducted using the generated data, the probability of predicting delinquencies increased by over 20%, and overall predictive accuracy improved by approximately 4%. These research findings are anticipated to significantly contribute to reducing delinquency rates and increasing profits when applied in actual financial institutions.

A study on the analysis of customer loan for the credit finance company using classification model (분류모형을 이용한 여신회사 고객대출 분석에 관한 연구)

  • Kim, Tae-Hyung;Kim, Yeong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.411-425
    • /
    • 2013
  • The importance and necessity of the credit loan are increasing over time. Also, it is a natural consequence that the increase of the risk for borrower increases the risk of non-performing loan. Thus, we need to predict accurately in order to prevent the loss of a credit loan company. Our final goal is to build reliable and accurate prediction model, so we proceed the following steps: At first, we can get an appropriate sample by using several resampling methods. Second, we can consider variety models and tools to fit our resampling data. Finally, in order to find the best model for our real data, various models were compared and assessed.

CRA Based Robust Controller Design for PWM Converter (CRA 기법을 이용한 PWM 컨버터의 강인제어기 설계)

  • Kim, Soo-Cheol;Kim, Hyung-Chul;Chung, Gyo-Bum;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • In this paper, a robust controller for PWM converter is proposed. The proposde converter controller consists of a PI controller for DC output voltage and a current controller using error-space approach for maintaining the sinusoidal current waveform and unity power factor. Conventionally, the try and error method has been used to design the current controller considering the switching frequency of the devices and sampling frequency of the digital controller. But this proposed method is based on characteristic ratio assignment(CRA) method which has the advantage to design the optimal gain to meet the referenced response and overshoot within the limit range. First, the CRA based current controller algorithm is explained. Then the validity of proposed controller is verified through the PSiM simulation and experience results.

Mitigation of Impulse Noise Using Slew Rate Limiter in Oversampled Signal for Power Line Communication (전력선 통신에서 오버 샘플링과 Slew Rate 제한을 이용한 임펄스 잡음 제거 기법)

  • Oh, Woojin;Natarajan, Bala
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.431-437
    • /
    • 2019
  • PLC(Power Line Communication) is being used in various ways in smart grid system because of the advantages of low cost and high data throughput. However, power line channel has many problems due to impulse noise and various studies have been conducted to solve the problem. Recently, ACDL(Adaptive Cannonical Differential Limiter) which is based on an adaptive clipping with analog nonlinear filter, has been proposed and performs better than the others. In this paper, we show that ACDL is similar to the detection of slew rate with oversampled digital signal by simplification and analysis. Through the simulation under the PRIME standard it is shown that the proposed performs equal to or better than that of ACDL, but significantly reduce the complexity to implement. The BER performance is equal but the complexity is reduced to less than 10%.

Optimization-based Deep Learning Model to Localize L3 Slice in Whole Body Computerized Tomography Images (컴퓨터 단층촬영 영상에서 3번 요추부 슬라이스 검출을 위한 최적화 기반 딥러닝 모델)

  • Seongwon Chae;Jae-Hyun Jo;Ye-Eun Park;Jin-Hyoung, Jeong;Sung Jin Kim;Ahnryul Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.331-337
    • /
    • 2023
  • In this paper, we propose a deep learning model to detect lumbar 3 (L3) CT images to determine the occurrence and degree of sarcopenia. In addition, we would like to propose an optimization technique that uses oversampling ratio and class weight as design parameters to address the problem of performance degradation due to data imbalance between L3 level and non-L3 level portions of CT data. In order to train and test the model, a total of 150 whole-body CT images of 104 prostate cancer patients and 46 bladder cancer patients who visited Gangneung Asan Medical Center were used. The deep learning model used ResNet50, and the design parameters of the optimization technique were selected as six types of model hyperparameters, data augmentation ratio, and class weight. It was confirmed that the proposed optimization-based L3 level extraction model reduced the median L3 error by about 1.0 slices compared to the control model (a model that optimized only 5 types of hyperparameters). Through the results of this study, accurate L3 slice detection was possible, and additionally, we were able to present the possibility of effectively solving the data imbalance problem through oversampling through data augmentation and class weight adjustment.