불균형 데이터는 범주에 따른 데이터의 분포가 불균형한 데이터를 의미한다. 이런 데이터를 활용해 기존 분류 알고리즘으로 분류기를 학습하면 성능이 저하되는 문제가 발생한다. 오버 샘플링은 이를 해결하기 위한 기법 중 하나로 수가 적은 범주[이하 소수 범주]에 속한 데이터 수를 임의로 증가시킨다. 기존 연구들에서는 수가 많은 범주[이하 다수 범주]에 속한 데이터 수와 동일한 크기만큼 증가시키는 경우가 많다. 이는 증가시키는 샘플의 수를 결정할 때 범주 간 데이터 수 비율만 고려한 것이다. 그런데 데이터가 동일한 수준의 불균형 정도를 갖더라도 범주별 데이터 분포에 따라서 분류 복잡도가 다르며, 경우에 따라 데이터 분포에서 존재하는 불균형 정도를 완전히 해소하지 않아도 된다. 이에 본 논문은 분류 복잡도를 활용해 데이터 셋 별 적정 오버 샘플링 비율을 산출하는 알고리즘을 제안한다.
Recently, more and more attempts have been made to solve the problems faced by academia and industry through machine learning. Accordingly, various attempts are being made to solve non-general situations through machine learning, such as deviance, fraud detection and disability detection. A variety of attempts have been made to resolve the non-normal situation in which data is distributed disproportionately, generally resulting in errors. In this paper, we propose handling method of imbalance data for machine learning. The proposed method to such problem of an imbalance in data by verifying that the population distribution of major class is well extracted. Performance Evaluations have proven the proposed method to be better than the existing methods.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.12A
/
pp.1774-1780
/
2000
본 논문에서는 TDMA 방식의 고속의 버스트 데이터 전송에서 프리앰블의 오버샘플링 데이터 값을 이용한 새로운 피드포워드 타이밍 추정 기법을 제안한다. 제안된 추정 기법은 검출 오류 분산 값 (DEV : Detection Error Variance) 측면에서 기존의 여러 타이밍 추정기법과 MCRB (Modified Cramer-Rao Bound)와 비교되어 진다. 또한, 제안된 타이밍 추정 기법을 고정 샘플링 클럭과 타이밍 보정기로서 보간 필터를 이용한 심볼 동기 블록을 적용하여 이상적인 경우의 BER과 그 성능을 비교한 결과 이상적인 경우에 비해 성능 저하가 BER이 $10^{-3}$인 지점에서 최대 0.2dB 이내임을 확인하였다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.45
no.1
/
pp.70-77
/
2008
On the wireless sensor network MAC protocols, one of main issues is energy enciency. Since several asynchronous wireless sensor network MAC protocols with short preamble sampling scheme can be operated without setting the timing synchronization among neighbor nodes, it consumes a little energy for maintaining protocols. However, each node encounters either preamble or data overhearing problem, because each node wakes up in a different time and must check whether the frame is being sent to itself or not. To solve this overhearing problem, we newly propose B-MAC++ that can reduce the overhearing energy consumption by using short preambles with destination address and payload length. from simulation results, we show that the proposed B-MAC++ has advantageous in terms of power consumption efficiency over other asynchronous wireless sensor network MAC protocols.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.189-189
/
2022
물 공급 시설의 효율적이고 안정적인 운영을 위한 운영 계획의 수립 및 검증을 위해서는 장기간의 유입량 자료가 필요하다. 하지만, 현실적으로 얻을 수 있는 실측 자료는 제한적이며, 유입량이 부족하여 댐 운영에 영향을 미치는 자료는 더욱 적을 수밖에 없다. 이를 개선하고자 장기간의 모의 유입량을 생성해 운영 계획을 수립하는 방법이 종종 사용되지만, 실측 자료를 기반으로 모의하기 때문에 이 역시 가뭄의 빈도가 낮아, 장기 가뭄이나 짧은 간격으로 가뭄이 발생할 시 안정적인 운영이 어렵다. 본 연구에서는 장기 가뭄 발생 시에도 안정적인 물 공급이 가능한 운영 계획 수립을 위해 가뭄 빈도를 증가시킨 유입량 모의 기법을 제안하고자 한다. 제안하는 모의 기법은 최근 머신러닝에서 사용되는 SMOTE 알고리즘을 기반으로 한다. SMOTE 알고리즘은 데이터의 불균형을 처리하기 위한 오버 샘플링 기법으로, 소수 그룹을 단순 복제하지 않고 새로운 복제본을 생성해 과적합의 위험이 적으며, 원자료의 정보가 손실되지 않는 장점이 있다. 본 연구에서는 미국 캘리포니아주에 위치한 Folsom 댐을 대상으로 고빈도 가뭄 유입량을 모의했으며, 고빈도 가뭄 유입량을 사용한 운영 계획을 수립하였다. Folsom 댐의 과거 관측 유입량 자료를 기반으로 고빈도 가뭄 유입량을 사용한 운영 계획과 일반적인 가뭄 빈도의 유입량을 사용한 운영 계획을 적용했을 때 발생하는 공급 부족량과 과잉 방류량의 차이를 비교해 고빈도 가뭄 유입량의 사용이 물 공급 시설의 안정적인 운영에 끼치는 영향을 확인하고자 한다.
COPD(Chronic Obstructive Pulmonary Disease)는 장기간에 걸쳐 기도가 좁아지는 폐질환으로, 규칙적 운동은 호흡을 용이하게 하고 증상을 개선할 수 있는 주요 자가관리 중재법 중 하나이다. 건강정보 데이터와 인공지능을 사용하여 규직적 운동 이행군과 불이행군을 선별하여 자가관리 취약 집단을 파악하는 것은 질병관리 측면에서 비용효과적인 전략이다. 하지만 많은 양의 데이터를 확보하기 어렵고, 규칙적 운동군과 그렇지 않은 환자의 비율이 상이하기 때문에 인공지능 모델의 전체적인 선별 능력을 향상시키기 어렵다는 한계가 있다. 이러한 한계를 극복하기 위해 본 연구에서는 국민건강영양조사 데이터를 사용하여 머신러닝 모델인 XGBoost와 딥러닝 모델인 MLP에 오버샘플링, 언더샘플링, 가중치 부여 등 불균형 데이터 처리 기법을 적용 후 성능을 비교하여 가장 효과적인 불균형 데이터 처리 기법을 제시한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.11a
/
pp.24-27
/
2017
본 논문에서는 빔-호핑 위성 전송 기반의 DVB-S2x 슈퍼프레임 수신기를 위한 프레임 검출 기법을 제안한다. 제안하는 검출 기법은 2 체배 오버샘플링 레이트에서(over-sampling rate)에서 동작을 수행하며, 슈퍼프레임의 헤더를 구성하는 start of super-frame (SOSF)과 super frame format indicator (SFFI)를 모두 이용하여 하드웨어 복잡도를 줄이면서도 견고하게 프레임을 검출할 수 있다.
머신러닝의 성능 저하에 크게 영향을 미치는 데이터 불균형은 데이터를 증강하거나 제거하여 해결할 수 있다. 본 논문에서는 지도학습에서 쓰이는 정답 데이터를 기반으로 새로운 데이터 증강기법인 CDBSMOTE을 제안한다. CDBSMOTE을 사용하면 임의의 값을 사용하지 않고, 기존의 데이터 증강기법의 문제점이었던 과적합을 최소화하며 지도학습 데이터를 효과적으로 증강시킬 수 있다.
In this paper, a clock and data recovery (CDR) circuit for a serial link with a half rate 4x oversampling phase and frequency detector structure without a reference clock is described. The phase detector (PD) and frequency detector (FD)are designed by 4X oversampling method. The PD, which uses bang-bang method, finds the phase error by generating four up/down signal and the FD, which uses the rotational method, finds the frequency error by generating up/down signal made by the PD output. And the six signals of the PD and the FD control an amount of current that flows through the charge pump. The VCO composed of four differential buffer stages generates eight differential clocks. Proposed circuit is designed using the 0.18um CMOS technology and operating voltage is 1.8V. With a 4X oversampling PD and FD technique, tracking range of 24% at 3.125Gbps is achieved.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.44
no.6
/
pp.21-28
/
2007
Using multi-resolution, the mutiresolution proportional-integral-derivative(MRPID) controller functions as a filter to eliminate noise and disturbance which are included in error signals. If the sampling frequency is high, the response time will be delayed because of the remaining high frequency component although the overshoot is removed. However, if the sampling frequency is low, the response time will be enhanced by getting rid of signal components while the overshoot is increased. In this paper, the sampling frequency tuning method is used the response of the proportional integral derivative(PID) controller and the MRPID controller, and the parameter tuning method is considered the characteristic of the MRPID controller. The proposal method is verified by computer simulations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.