• Title/Summary/Keyword: 오버레이 용접보수

Search Result 4, Processing Time 0.019 seconds

High-efficiency repair welding technology for marine engine components (선박엔진 부품의 고능률 보수용접기술)

  • Kim, Young-Sik;Kil, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • Of the marine engine components, the piston crown and exhaust valve are repaired most frequently. These works are conducted through conventional welding processes such as GTAW or SAW, domestically in marine engine repair factories. New high-efficiency welding or overlay processes such as tandem SAW, tandem MAG, hybrid TIG-MIG welding, pulsed-GMAW, CMT welding, and super TIG welding have been developed recently. Moreover, the plasma transfered arc (PTA) process is an efficient spray method for overlaying on the exhaust valve. In this review paper, the new high-efficiency repair welding methods are introduced for marine engine components. The problems due to repair welding for marine engine components are also presented.

Effect of Similar Metal Weld & Preemptive Weld Overlay On Residual Stress of Repair Weldment In Surge Nozzle (고리 원전 밀림관 노즐의 동종용접과 예방용접 Overlay가 보수용접 잔류응력에 미치는 영향)

  • Oh, Chang-Young;Song, Tae-Kwang;Shim, Kwang-Bo;Kim, Ji-Soo;Kim, Yun-Jae;Lee, Kyung-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.557-564
    • /
    • 2009
  • Welding residual stress is occurred after welding process. Tensile residual stress is one factor of PWSCC. Repair welding usually happened during the manufacturing welding process. Repair welds cause strong tensile residual stress. In PWR, Repair weldments made by Alloy 82/182 is susceptible to PWSCC caused by tensile stress, material and environment. Therefore, mitigation of welding residual stress in weldments is important for reliable operating. PWOL is one of the methods for mitigation and verified for over twenty years. In this paper, residual stress distribution of repaired weldments and the effect of PWOL on mitigation is examined for surge nozzle.

Field Application of Phased Array Ultrasonic Testing for Structural Weld Overlay on Dissimilar Welds of Pressurizer Nozzles (가압기 노즐 이종금속 용접부의 구조적 오버레이 용접부에 대한 위상배열 초음파기법의 현장 적용)

  • Kim, Jin-Hoi;Kim, Yongsik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.4
    • /
    • pp.268-274
    • /
    • 2015
  • Weld overlay was first used in power plants in the US in the early 1980s as an interim method of repairing the welds of flawed piping joints. Weld overlaid piping joints in nuclear power plants must be examined periodically using ultrasonic examination technology. Portable phased array ultrasonic technology has recently become available. Currently, the application of preemptive weld overlays as a mitigation technique and/as a method to improve the examination surface condition for more complex configurations is becoming more common. These complex geometries may require several focused conventional transducers for adequate inspection of the overlay, the original weld, and the base material. Alternatively, Phased array ultrasonic probes can be used to generate several inspection angles simultaneously at various focal depths to provide better and faster coverage than that possible by conventional methods. Thus, this technology can increase the speed of examinations, save costs, and reduce radiation exposure. In this paper, we explain the general sequence of the inspection of weld overlay and the results of signal analysis for some PAUT (phased array ultrasonic testing) signals detected in on-site inspections.

Review on the Integrity Evaluation and Maintenance of Wall-Thinned Pipe (감육배관의 건전성평가 및 정비 관련 기술기준 고찰)

  • Lee, Sung Ho;Lee, Yo Seob;Kim, Hong Deok;Lee, Kyoung Soo;Hwang, Kyeong Mo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion, cavitation, flashing and/or liquid droplet impingement, is a main concern in secondary steam cycle piping system of nuclear power plants in terms of safety and operability. Thinned pipe management program (TPMP) has being developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning. In this paper, newest technologies, standards and regulations related to the integrity assessment, repair and replacement of thinned pipe component are reviewed. And technical improvement items in TPMP to secure the reliability and effectiveness are also presented.