• Title/Summary/Keyword: 오리피스 유체 댐퍼

Search Result 10, Processing Time 0.025 seconds

Study on Performance Comparison of MR Damper for Fluid Properties and Orifice Shapes (MR 유체물성과 오리피스 형상에 대한 MR 댐퍼 성능비교 연구)

  • Kwon, Young-Chul;Park, Sam-Jin;Kim, Ki-Young;Baek, Dae-Sung;Lee, Seok-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1305-1310
    • /
    • 2014
  • MR(Magneto-Rheological) damper generates the magnetic shear force due to the cohesiveness of MR fluid influenced by a magnetic field. MR fluid consists of magnetic particles and a base liquid. In the present study, the damping forces of MR damper were investigated for density 1.3, 1.5 and $1.7g/cm^3$, and viscosity 1000 and 10000cp, and for the change of orifice shapes. It was found that the increase in the density and viscosity of MR fluid could change the damping force of MR damper due to the magnetic effects. Also, the damping forces on orifice shapes increased as the orifice gap and length decreased. These results showed that the properties of MR fluid and orifice shapes were important for the optimum design of MR damper.

An Experimental Study on the Structural Vibration Control Using Semi-Active Orificed Fluid Dampers (반능동형 오리피스 유체댐퍼를 이용한 구조물 진동제어에 관한 실험적 연구)

  • 문석준;김병현;정종안
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2004
  • In general, control performance of the active control system is superior to that of the passive control devices. However, the active system require a large amount of external energy to operate the actuators. Semi-active control systems maintain the reliability of the passive control systems while taking advantage of the adjustability of the active control system. In this research, a semi-active orificed fluid damper having the capacity of about 2 tons was designed and fabricated. It is a two-stage damper with normally open solenoid valve. A series of tests was performed to grasp its performance characteristics. It was also applied to a 6-story steel structure subjected to random and seismic excitations for the confirmation of its validity on structural vibration absorption.

Numerically Analytical Design of An Orifice Fluid Damper (오리피스 유체댐퍼의 수치해석적 설계)

  • 이재천;김성훈;문석준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.105-112
    • /
    • 2003
  • This paper presents the numerical design technology of a passive orifice fluid damper system especially for the characteristics between the damper piston velocity and the damping force. Numerical analysis with the visual interfacial modeling technique was applied into the analysis of the damper system's dynamics. A prototype orifice fluid damper was manufactured and experimentally tested to validate the numerical simulation results. The performances of various damper system schemes were investigated based on the verified numerical simulation model of orifice fluid damper.

An Experimental Study on the Building Vibration Control Using Orificed Fluid Dampers (오리피스 유체 댐퍼를 이용한 건축 구조물 진동제어의 실험적 연구)

  • Chung, Tae-Young;Lim, Chae-Wook;Kim, Byung-Hyun;Moon, Seok-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.469-477
    • /
    • 2002
  • An orificed fluid damper(OFD) having the capacity of about 2 tons was designed and fabricated, and series of tests were performed to grasp the fundamental performance characteristics of it. Several important findings were observed and introduced in this paper. It was applied to a 6-story steel structure under random excitation and seismic excitation for the confirmation of its validity on structural vibration absolution. The experimental results demonstrated that the addition of an OFD to the test structure is very effective in reduction of vibration level of the higher modes as well as the fundamental mode. Maxwell model was adopted to describe the frequency-dependent characteristics of the fabricated OFD and the numerical simulation was carried for the test structure. It was confirmed that the experimentally and numerically simulated results agree well.

High-performance Magneto-rheological Damper Design (고성능 MR댐퍼의 설계)

  • 이종석;백운경
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.470-477
    • /
    • 2004
  • This study shows the design process of a MR damper for semi-active suspension systems. Damping force characteristics of the designed damper was predicted through the flow analysis and magnetic analysis. The predicted results were compared with the experimental results and the initial design specification was modified according to the results.

A Study on the Experimental Dynamic Identification of Cylindrical Oil Dampers in the Wide Frequency Range (넓은 주파수 범위에서의 실린더형 유체 댐퍼에 대한 실험적 동특성 규명 연구)

  • Moon, S.J.;Kim, H.S.;Chung, T.Y.;Lee, D.H.;Hwang, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.528-536
    • /
    • 2010
  • System identification for cylindrical oil dampers is carried out based on a series of dynamic experimental tests and theoretical approach for the analysis of the experimental data. Experimental tests are conducted using a specific hydraulic actuator in the wide frequency range from 10 Hz to 90 Hz. From this study, it is confirmed that control force of the damper is composed of inertia, damping and restoring components. In general, both restoring and damping components are significant and comparable. However, the portion of the inertia components becomes more significant than to be negligible in the high frequency range.

Experimental Study on the Performance of an Orifices Fluid Damper (오리피스를 이용한 유체댐퍼의 성능실험)

  • 정태영;임채욱;김병현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1141-1145
    • /
    • 2001
  • An orifices fluid damper having the capacity of about 2 tons was designed and fabricated, and series of tests were performed to grasp the fundamental performance characteristics of it. Several important findings were observed and introduced in this paper. This fabricated orifices fluid damper will be applied to the structure under seismic load for the confirmation of its validity on structural vibration absorbtion as an extended study.

  • PDF

Experimental Study on the Performance of a Semi-Active Orificed Fluid Damper (반능동형 오리피스 유체댐퍼의 성능 실험)

  • 문석준;김병현;정종안
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.387-394
    • /
    • 2003
  • A compromise between passive and active control systems has been developed recently in the form of semi-active control systems. Semi-active control systems maintain the reliability of passive control systems while taking advantage of the adjustability of an active control system. This paper presents the results of an experimental study to evaluate the performance of a semi-active orificed fluid damper. The semi-active orificed fluid damper considered is a two-stage damper with normally open solenoid valve. Through a series of experimental tests, characteristics and performance of the damper is investigated.

  • PDF

Performance Evaluation of a Semi-Active ER Damper with Free Piston and Spring (부동피스톤과 스프링을 갖는 반능동 ER댐퍼의 성능평가)

  • Choe, Seung-Bok;Kim, Wan-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.691-700
    • /
    • 2000
  • This paper presents a novel type of a semiactive damper featuring an electro-rheological(ER) fluid. Unlike conventional cylindrical ER damper, the proposed one has controllable orifices by the intensity of electric fields (We call it orifice type). The dynamic model of the orifice type ER damper is formulated by incorporating field-dependent Bingham properties of an arabic gum-based ER fluid. Design parameters such as electrode gap are subsequently determined on the basis of the dynamic model. After manufacturing the orifice type ER damper, field-dependent damping forces and damping force controllability are empirically evaluated. In the evaluation procedure, conventional cylindrical ER damper is adopted and its performance characteristics are compared with those of the orifice type ER damper. In addition, the proposed one is installed with a full-car model and its vibration control performance associated with a skyhook controller is investigated.