• 제목/요약/키워드: 오류 역전파 신경회로망

검색결과 16건 처리시간 0.026초

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • 김용수
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.101-105
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning Vector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 LVQ 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기본의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

  • PDF

클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using A Learning Rule Considering the Distance Between Classes)

  • 김용수;백용선;이세열
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.109-112
    • /
    • 2006
  • 본 논문은 클래스들의 대표값들과 입력 벡터와의 거리를 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 이 새로운 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류 역전파 신경회로망과 LVQ 알고리즘보다 성능이 우수하였다.

  • PDF

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.800-804
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning )rector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기존의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC (Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

개선된 신경회로망을 이용한 반도체 Wafer ID 인식시스템 (Semiconductor Wafer ID Recognition System using an Improved Neural Network)

  • 조영임
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.549-552
    • /
    • 2004
  • 본 논문에서는 반도체의 Wafer ID 문자인식을 위해 기존의 오류 역전파 학습알고리즘을 개선하여 최적의 학습 학습 조건에 관해 연구하였다. 결과, 오류 역전파 학습알고리즘의 학습 최적 조건은 은닉층수는 1층, n값은 0.6 이상, 은닉층 노드수는 10개일 때 99%의 높은 인식률을 보였다 본 논문에서 제안하는 최적조건물 사용함으로써 기존의 오류역전파 학습 알고리즘이 가진 문제점을 해결할 수 있었다.

  • PDF

오류 역전파 학습 알고리즘을 이용한 디지털 워터마킹에 대한 소유권 인증 (Copyright Authentication for Digital Watermarking using Error Backpropagation)

  • 최은주;서정의;차의영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.580-582
    • /
    • 1998
  • 인터넷의 보급으로 인하여 디지털 데이터의 복제가 확산됨에 따라 멀티미디어 데이터에 대한 소유권 보호와 인증에 대한 문제가 대두되고 있는 실정이다. 본 논문에서는 디지털 영상을 다중해상도 표현이 가능한 웨이브릿 변환(Wavelet Transform)을 통하여 저주파수 영역에 인간 시각으로 지각 할 수 없는 워터마크를 삽입하고, 삽입된 워터마크의 영상을 인증하기 위한 방법으로 오류 역전파 학습 알고리즘(Error Backpropagation)을 이용한 신경회로망적 접근방법을 제안한다. 워터마크를 추출하기 위해서는 원영상이 필요하고, 내장된 워터마크가 손실 압축과 필터링 등의 일반적인 영상 처리에 강인함을 실험 결과를 증명하고, 제안한 신경회로망적 접근방법이 좋은 결과를 나타냄으로 실험을 통하여 증명하였다.

  • PDF

암반터널 예비설계를 위한 인공신경회로망 전문가 시스템의 개발 (Development of an Artificial Neural Network Expert System for Preliminary Design of Tunnel in Rock Masses)

  • 이철욱;문현구
    • 한국지반공학회지:지반
    • /
    • 제10권3호
    • /
    • pp.79-96
    • /
    • 1994
  • 인공신경회로망을 이용하여 터널굴착설계를 위한 전문가 시스템 NESTED를 개발하였다. 이를 위하여 지하 암반의 안정성을 평가할 수 있는 신경회로망 모델과 대표적인 암반분류법인 RMR과 Q 시스템 사이의 상관관계를 결정할 수 있는 신경회로망 모델을 사용하였다. 또한 사용된 모델과 전산화된 암반분류법 프로그램이 동일한 사용자 환경을 통해 운용될 수 있도록 통합 시스템을 구성하였다. NESTED에 사용된 신경회로망의 구조는 역전파 학습 알고리즘을 채용한 다층 역전파 신경 회로망이다. 전문가 시스템에 필요한 지식기반을 구축하기 위해 이전의 현장 시공사례로 학습과정을 수행함으로써 불완전하거나 오류가 포함된 정보를 처리할 수 있는 공학 데이터베이스를 개발하였다. 일련의 실험을 통해 전문가 시스템을 현장사례에 적용해보고 여기서 출력된 결과를 문헌에 보고된 자료와 비교하였다. 이 결과 암반의 파괴거동을 추정하고 이에 따른 보강시기의 변화를 정확히 예측하는 신경회로망의 추론능력을 확인할 수 있었다. 이처럼 본 연구를 통해 개발된 신경회로망 전문가 시스템을 암반터널에 적용할 경우 부족한 지질자료에 대해 합리적인 기준을 제공하고 터널의 예비설계에 필요한 보강설계를 제시할 수 있었다.

  • PDF

다층 신경회로망과 가우시안 포텐샬 함수 네트워크의 구조적 결합을 이용한 효율적인 학습 방법 (Efficient Learning Algorithm using Structural Hybrid of Multilayer Neural Networks and Gaussian Potential Function Networks)

  • 박상봉;박래정;박철훈
    • 한국통신학회논문지
    • /
    • 제19권12호
    • /
    • pp.2418-2425
    • /
    • 1994
  • 기울기를 따라가는 방식(gradient descent method)에 바탕을 둔 오류 역전파(EBP : Error Back Propagation) 방법이 가장 널리 사용되는 신경회로망의 학습 방법에서 문제가 되는 지역 최소값(local minima), 느린 학습 시간, 신경망 구조(structure), 그리고 초기의 연결 강도(interconnection weight) 등을 기존의 다층 신경 회로망에 지역적인 학습 능력을 가진 가우시안 포텔샵 네트워크(GPFN : Gaussian Potential Function Networks)를 병렬적으로 부가하여 해결함으로써 지역화된 오류 학습 패턴들이 나타내는 문제에 대하여 학습 성능을 향상시킬 수 잇는 새로운 학습 방법을 제시한다. 함수 근사화 문제에서 기존의 EBP 학습 방법과의 비교 실험으로 제안된 학습 방법이 보다 개선된 일반화 능력과 빠른 학습 속도를 가짐을 보여 그 효율성을 입증한다.

  • PDF

영상 인식을 위한 개선된 자가 생성 지도 학습 알고리듬에 관한 연구 (A Study on Enhanced Self-Generation Supervised Learning Algorithm for Image Recognition)

  • 김태경;김광백;백준기
    • 한국통신학회논문지
    • /
    • 제30권2C호
    • /
    • pp.31-40
    • /
    • 2005
  • 오류 역전파 알고리즘의 문제점과 ART 신경회로망의 문제점을 개선하기 위해 Jacobs가 제안한 delta-bar-delta 방법과 신경회로망을 결합한 자가 생성 지도 학습 알고리듬을 제안한다. 입력층과 은닉층에서는 ART-1과 ART-2 알고리듬을 이용하고, winner-take-all 방식은 완전 연결 구조이나 연결된 가중치만을 조정하도록 채택하였다. 실험을 위해 학생증, 주민등록증, 컨테이너의 영상으로 추출한 패턴을 신경회로망의 은닉층 노드에 대해 실험하였고, 실험결과 제안된 자기 생성 지도 학습알고리듬이 지역최소화, 학습 속도, 정체 현상이 기존의 방법보다 성능이 개선된 것을 확인하였다.

신경회로망을 이용한 가전기기 전기 사용량 모니터링 및 예측 (Monitoring and Prediction of Appliances Electricity Usage Using Neural Network)

  • 정경권;최우승
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권8호
    • /
    • pp.137-146
    • /
    • 2011
  • 에너지 소모에 대한 증가되는 소비자의 관심을 지원하기 위하여 가전기기의 에너지 모니터링과 예측 방식을 제안한다. 제안한 시스템은 0.5초마다 전류 센서를 지나가는 전류량을 측정하는 스마트 플러그라는 일반 전기 콘센트로 설계하고, 신경회로망의 훈련과 시험 데이터를 얻기 위해 평균기온, 최저기온, 초고기온, 습도, 일조시간의 날씨 정보를 입력 데이터로 사용하고, 스마트 플러그를 통한 전기 사용량을 목표값으로 사용하였다. 훈련을 위한 실험데이터를 사용하여 역전파 알고리즘을 기반으로 한 신경회로망을 구성하였다. 입력과 출력 데이터의 비선형 매핑을 위해 다층신경회로망을 사용하였다. 제안한 신경회로망 모델은 상관관계 계수가 0.9965로 우수하게 전기 사용량을 예측할 수 있는 것을 확인하였으며, 예측의 평균 제곱 오차는 0.02033이다.