• 제목/요약/키워드: 오류 탐지

Search Result 256, Processing Time 0.036 seconds

An Architecture-based Multi-level Self-Adaptive Monitoring Method for Software Fault Detection (소프트웨어 오류 탐지를 위한 아키텍처 기반의 다계층적 자가적응형 모니터링 방법)

  • Youn, Hyun-Ji;Park, Soo-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.568-572
    • /
    • 2010
  • Self-healing is one of the techniques that assure dependability of mission-critical system. Self-healing consists of fault detection and fault recovery and fault detection is important first step that enables fault recovery but it causes overhead. We can detect fault based on model, the detection tasks that notify system's behavior and compare normal behavior model and system's behavior are heavy jobs. In this paper, we propose architecture-based multi-level self-adaptive monitoring method that complements model-based fault detection. The priority of fault detection per component is different in the software architecture. Because the seriousness and the frequency of fault per component are different. If the monitor is adapted to intensive to the component that has high priority of monitoring and loose to the component that has low priority of monitoring, the overhead can be decreased and the efficiency can be maintained. Because the environmental changes of software and the architectural changes bring the changes at the priority of fault detection, the monitor learns the changes of fault frequency and that is adapted to intensive to the component that has high priority of fault detection.

Method for Detecting Errors of Korean-Chinese MT Using Parallel Corpus (병렬 코퍼스를 이용한 한중 기계번역 오류 탐지 방법)

  • Jin, Yun;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.113-117
    • /
    • 2008
  • 본 논문에서는 패턴기반 자동번역시스템의 효율적인 번역 성능 향상을 위해 병렬 코퍼스(parallel corpus)를 이용한 오류 자동 탐지 방법을 제안하고자 한다. 번역시스템에 존재하는 대부분 오류는 크게 지식 오류와 엔진 오류로 나눌 수 있는데 통상 이런 오류는 이중 언어가 가능한 훈련된 언어학자가 대량의 자동번역 된 결과 문장을 읽음으로써 오류를 탐지하고 분석하여 번역 지식을 수정/확장하거나 또는 엔진을 개선하게 된다. 하지만, 이런 작업은 많은 시간과 노력을 필요로 하게 된다. 따라서 본 논문에서는 병렬 코퍼스 중의 목적 언어(Target Language) 문장 즉, 정답 문장과 자동번역 된 결과 문장을 다양한 방법으로 비교하면서 번역시스템에 존재하고 있는 지식 및 엔진 오류를 자동으로 탐지하는 방법을 제안한다. 제안한 방법은 한-중 자동번역시스템에 적용하여 그 정확률과 재현률을 측정하였으며, 자동적으로 오류를 탐지하여 추출 할 수 있음을 증명하였다.

  • PDF

Error Word Detection in Korean Corpus (한국어 대용량 코퍼스의 오류 어휘 탐지 방안)

  • Choi, Min-Joo;Park, Ji-Hoon;Son, Sung-Hwan;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.500-502
    • /
    • 2019
  • 대용량의 언어 코퍼스를 이용할 때, 오류 어휘가 코퍼스에 포함되어 있는 경우 해당 코퍼스를 이용한 실험의 성능이 저하될 수 있다. 이 때문에 정확한 문장들로 이루어진 코퍼스를 구축하기 위해 다량의 문장 중에서 정확하게 오류 어휘를 탐지할 필요가 있다. 본 논문에서는 대용량 데이터에서 빈도수가 낮은 음절을 이용해 오류 어휘를 탐지하는 방법을 제안하고, 제안 방법을 이용하여 오류 어휘 탐지 시 고려하여야 할 점에 대해 서술한다.

  • PDF

Design and Implementation of False Alerts Reducing Model Using Fuzzy Technique for Network-based Intrusion Detection System (퍼지기법을 이용한 네트워크 침입 탐지 시스템 오류경고메시지 축소 모텔 설계 및 구현)

  • 박민호;성경;소우영
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.250-254
    • /
    • 2003
  • 최근 몇 년 동안 이루어진 네트워크 및 인터넷 시장의 발전과 더불어 빈번히 발생하는 시스템에 대한 침입을 방어하기 위한 여러 도구들이 개발되어왔다. 이러한 도구들 중 침입탐지시스템은 시스템내의 불법침입을 탐지하는 시스템으로, 침입탐지시스템의 문제점인 과다한 오류경고메시지 발생으로 인하여 침입 판단의 어려움이 따르고 있다. 본 논문에서는 오류경고메시지의 축소를 위한 방법으로 인증된 네트워크 내부에서 발생하는 긍정오류 탐지를 축소하기 위해 각 서버의 취약성을 다수의 판단자에 의한 오탐 확률수치를 입력받아 퍼지기법을 이용하여 취합, 판단자의 불확실성을 감소시킨 필터링룰을 생성 및 적용하여 긍정오류 경고메시지를 축소시킬 수 있는 모델을 설계 및 구현하므로써 탐지의 정확성 향상에 활용할 수 있을 것이다

  • PDF

Critical Error Span Detection Model of Korean Machine Translation (한국어 기계 번역에서의 품질 검증을 위한 치명적인 오류 범위 탐지 모델)

  • Dahyun Jung;Seungyoon Lee;Sugyeong Eo;Chanjun Park;Jaewook Lee;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.80-85
    • /
    • 2023
  • 기계 번역에서 품질 검증은 정답 문장 없이 기계 번역 시스템에서 생성된 번역의 품질을 자동으로 추정하는 것을 목표로 한다. 일반적으로 이 작업은 상용화된 기계 번역 시스템에서 후처리 모듈 역할을 하여 사용자에게 잠재적인 번역 오류를 경고한다. 품질 검증의 하위 작업인 치명적인 오류 탐지는 번역의 오류 중에서도 정치, 경제, 사회적으로 문제를 일으킬 수 있을 만큼 심각한 오류를 찾는 것을 목표로 한다. 본 논문은 치명적인 오류의 유무를 분류하는 것을 넘어 문장에서 치명적인 오류가 존재하는 부분을 제시하기 위한 새로운 데이터셋과 모델을 제안한다. 이 데이터셋은 거대 언어 모델을 활용하는 구축 방식을 채택하여 오류의 구체적인 범위를 표시한다. 또한, 우리는 우리의 데이터를 효과적으로 활용할 수 있는 다중 작업 학습 모델을 제시하여 오류 범위 탐지에서 뛰어난 성능을 입증한다. 추가적으로 언어 모델을 활용하여 번역 오류를 삽입하는 데이터 증강 방법을 통해 보다 향상된 성능을 제시한다. 우리의 연구는 기계 번역의 품질을 향상시키고 치명적인 오류를 줄이는 실질적인 해결책을 제공할 것이다.

  • PDF

Failure Detection in the Linux Cluster File System $SANique^{TM}$ (리눅스 클러스터 화일 시스템 $SANique^{TM}$의 오류 탐지 기법)

  • 임화정;이규웅;이장선;오상규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.37-39
    • /
    • 2002
  • 본 논문은 SAN(storage area network)강에 네트워크-부착형 (network-attached) 저장 장치들을 직접 연결하여 화일 서버 없이 직접 데이터 전송이 가능한 SAN 기반의 리눅스 클러스터 공유 화일 시스템인 SANique$^{TM}$의 오류 탐지 기법 및 회복 기법에 대하여 기술한다. 클러스터 내의 노드 오류에 의해 발생하는 "split-brain"오류 상황 및 문제점을 공유 화일 시스템 환경 하에서 성의하고, 이 문제를 해결할 수 있는 오류 탐지기법을 제시한다.

  • PDF

Detection and Recovery of Failure Node in SAN-based Cluster Shared File System $SANique^{TM}$ (SAN 기반 클러스터 공유 파일 시스템 $SANique^{TM}$의 오류 노드 탐지 및 회복 기법)

  • Lee, Kyu-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2609-2617
    • /
    • 2009
  • This paper describes the design overview of shared file system $SANique^{TM}$ and proposes the method for detection of failure node and recovery management algorithm. We also illustrate the characteristics and system architecture of shared file system based on SAN. In order to provide uninterrupted service, the detection and recovery methods are proposed under the all possible system failures and natural disasters. The various kinds of system failures and disasters are characterized and then the detection and recovery method are proposed in each disconnected computing node group.

Detecting Errors in Dependency Treebank through XGBoost and Cross Validation (XGBoost와 교차 검증을 이용한 구문분석 말뭉치에서의 오류 탐지)

  • Choi, Min-Seok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Hyuk-Ro;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.103-107
    • /
    • 2020
  • 의존구조 말뭉치는 자연언어처리 분야에서 문장의 의존관계를 파악하는데 널리 사용된다. 이러한 말뭉치는 일반적으로 오류가 없다고 가정하지만, 현실적으로는 다양한 오류를 포함하고 있다. 이러한 오류들은 성능 저하의 요인이 된다. 이러한 문제를 완화하려고 본 논문에서는 XGBoost와 교차검증을 이용하여 이미 구축된 구문분석 말뭉치로부터 오류를 탐지하는 방법을 제안한다. 그러나 오류가 부착된 학습말뭉치가 존재하지 않으므로, 일반적인 분류기로서 오류를 검출할 수 없다. 본 논문에서는 분류기의 결과를 분석하여 오류를 검출하는 방법을 제안한다. 성능을 분석하려고 표본집단과 모집단의 오류 분포의 차이를 분석하였고 표본집단과 모집단의 오류 분포의 차이가 거의 없는 것으로 보아 제안된 방법이 타당함을 알 수 있었다. 앞으로 의미역 부착 말뭉치에 적용할 계획이다.

  • PDF

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

Error Detection Architecture for Modular Operations (Modular 연산에 대한 오류 탐지)

  • Kim, Chang Han;Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.193-199
    • /
    • 2017
  • In this paper, we proposed an architecture of error detection in $Z_N$ operations using $Z_{(2^r-1)N}$. The error detection can be simply constructed in hardware. The hardware overheads are only 50% and 1% with respectively space and time complexity. The architecture is very efficient because it is detection 99% for 1 bit fault. For 2 bit fault, it is detection 99% and 50% with respective r=2 and r=3.