국내 원자력발전소의 발전정지사례에 대해 원전 종사원이 분석한 자료를 수록하여 발간하는 원자력발전소 발전정지사례집을 이용하여 인적오류가 개입된 것으로 판단된 총77건의 불시정지 사례를 추출하여, 인적오류 저감의 우선순위가 높은 원자력발전소 작업분야를 도출하기 위한 분 석을 수행하였다. 이를 이하여, 먼저 인적오류가 개입된 발전소 계통, 인적오유 발생시의 작업상 황 및 작업유형, 그리고인적오류의 유형에 대한 분류체계를 작성하였다. 발전소 근무 경험을 바 탕으로 사례별로 발전정지에 가장 직접적인 영향을 미친 작업행위를 구분하고, 이 행위에 대해 작성된 분류체계의 해당항목을 판정하였다. 이 사례별 분석결과를 이용하여 발전소 계통, 작업상 황, 작업유형, 오류유형 등, 4가지 항목에 대하여 오류발생의 추이를 분석하였으며, 또한 발전소 계통과 작업상황, 계통과 작업유형, 작업상황과 작업유형, 작업유형과 오류유형 등, 항목간 오류 발생 연관성을 조사하였다. 이 결과로 인적오류의 발생률이 높은 발전소 계통, 작업상황, 작업유형 및 오류유형이 구분되었다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.144-151
/
2021
딥러닝의 등장으로 자동 음성 인식 (Automatic Speech Recognition) 기술은 인간과 컴퓨터의 상호작용을 위한 가장 중요한 요소로 자리 잡았다. 그러나 아직까지 유사 발음 오류, 띄어쓰기 오류, 기호부착 오류 등과 같이 해결해야할 난제들이 많이 존재하며 오류 유형에 대한 명확한 기준 정립이 되고 있지 않은 실정이다. 이에 본 논문은 음성 인식 시스템의 오류 유형 분류 기준을 한국어에 특화되게 설계하였으며 이를 다양한 상용화 음성 인식 시스템을 바탕으로 질적 분석 및 오류 분류를 진행하였다. 실험의 경우 도메인과 어투에 따른 분석을 각각 진행하였으며 이를 통해 각 상용화 시스템별 강건한 부분과 약점인 부분을 파악할 수 있었다.
The Journal of Korean Association of Computer Education
/
v.17
no.5
/
pp.43-51
/
2014
This study has purpose on analyzing the error types which are identified after middle and high school students perform the online programming assignments and also has the purpose on the analysis of correlation between the frequency of error occurrence according to academic achievement level in programming concept learning and types of errors analyzed previously. For this study, the syntax, logical, and coding errors are analyzed from the performed results of programming research assignment for 88 students. Analyzed results show that the logical error has the highest occurrence rate of 69.3% among three types of errors, and it has been shown meaningful difference in the frequency of error occurrence between three achievement level groups of high, middle, and low. In the correlation analysis of achievement level and error types, it shows negative relationship between logical error and coding error, and therefore it can be concluded that as achievement level is higher, both logical and coding errors tend to occur less. In the correlation analysis in error types, it shows positive relationship between syntax error and coding error.
Recently, studies on Korean spelling correction have been actively conducted based on machine translation and automatic noise generation. These methods generate noise and use as train and data set. This has limitation in that it is difficult to accurately measure performance because it is unlikely that noise other than the noise used for learning is included in the test set In addition, there is no practical error type standard, so the type of error used in each study is different, making qualitative analysis difficult. This paper proposes new 'error type classification' for deep learning-based Korean spelling correction research, and error analysis perform on existing commercialized Korean spelling correctors (System A, B, C). As a result of analysis, it was found the three correction systems did not perform well in correcting other error types presented in this paper other than spacing, and hardly recognized errors in word order or tense.
Proceedings of the Korean Society of Disaster Information Conference
/
2022.10a
/
pp.135-136
/
2022
최근 기후변화의 영향으로 태풍 및 국지성 집중호우 등 자연재해 발생빈도가 증가함에 따라 풍수해로 인한 인명피해와 재산피해가 증가하고 있다. 국내에서는 재해연보를 통해 자연재난 피해이력 통계정보를 제공하고 있으며, 당해연도 자연재해상황을 기간별, 시도별, 수계별, 월별, 원인별 총괄통계와 인명피해, 시설피해와 관련된 피해면적, 피해액, 복구액 등 세부내용으로 구성하여 정보를 제공하고 있다. 행정안전부는 국가재난정보시스템을 통해 취합된 지자체 피해이력 통계자료를 입력하고 있는데 입력하는 과정에서 누락, 오기 등의 오류가 발생할 가능성이 있다. 경제적 손실이 증가하고 있는 풍수해 재난이 발생하게 될 경우 피해비용 집계, 피해액 산정 등 정확한 자료로서 구축되지 않으면 연구 및 분석을 수행하기 위한 통계자료로서 활용될 수 없다. 이러한 문제점을 개선하기 위해서 본 연구에서는 1985년부터 2018년까지 재해연보에 대해서 기간별-시군구별 자료분석을 통해 피해이력 데이터 오류 유형에 대해 분류하였다.
Annual Conference on Human and Language Technology
/
1993.10a
/
pp.285-293
/
1993
대량의 말뭉치에서 나타나는 맞춤법 오류의 대부분은 타자수의 입력 실수로 인한 것이다. 맞춤법 오류의 유형은 크게 띄어 쓰기 오류, 철자 오류, 띄어 쓰기와 철자의 복합 오류의 세 가지로 나타난다. 이 중, 철자 오류를 표층 형태만으로 표준어 오류, 조사/어미 오류, 자소 대치 오류로 유형을 분류하였다. 본 논문은 300만 말뭉치에서 형태소 분석이 실패한 맞춤법 오류 어절 중에서 띄어 쓰기와 철자 오류를 분석하여, 각 오류 유형에 따른 교정 방법과 자소 대치 규칙 베이스를 이용한 교정 방법을 구현하였다. 또한 형태소 분석기를 거친 40만 어절 사전을 이용한 분석기로 기존의 형태소 분석기를 대치시켜 교정 어절을 검증하였고, 위의 사전에서 추출한 순위 결정 요소와 Heuristic 정보를 이용하여 각 후보 어절에 대한 가중치를 계산하고 가능성이 높은 교정 어절을 제시하는 시스템을 구현하였다.
The purpose of this study was to investigate the characteristics of reading, writing fluency of the underachieving children and stuttering children and school-aged children and frequency of errors. The participants were 15 underachieving children and 15 stuttering children and 15 school-aged children without disabilities. All participants were required to conduct reading, writing, speaking tasks. First, work for the reading tasks were different among the underachieving children and stuttering children and school-aged children. Second, writing tasks were not different among the groups in the writing fluency, but it was lacking in accuracy, which is stuttering, speaking fluency as well as their language fluency is suggesting the need for diagnosis and intervention. Third, this type of errors of writing tasks is showed higher levels of ommission, substitution, grammatical errors in the underachieving children group. The therapy of reading of stuttering also consider a treatment program that can be configured in the combined writing tasks.
Kim, Min-Ju;Jeong, Jun-Ho;Lee, Hyeon-Ju;Choe, Jae-Hyeok;Kim, Hang-Jun;Lee, Sang-Jo
Annual Conference on Human and Language Technology
/
1998.10c
/
pp.41-48
/
1998
교정 시스템에 나타나는 오류 유형들 중에는 전체적인 교정률에 차지하는 비중은 적지만 출현할 때마다 틀릴 가능성이 아주 높은 오류들이 있다. 기존의 교정 시스템에서는 이러한 오류들에 대한 처리가 미흡한데, 철자 오류와 띄어쓰기 오류 중 형태가 비슷하거나 같은 형태가 다른 기능을 함으로써 발생하는 오류들이다. 이러한 오류는 일반 문서 작성자뿐만 아니라 한글 맞춤법에 대해 어느 정도 지식을 가진 사람의 경우에도 구분이 모호하다. 복합 명사와 미등록어를 제외한 오류 중 약 30%가 여기에 속한다. 따라서 본 논문에서는 이러한 오류 유형들을 분류하고, 이 중에서 빈번하게 출현하는 오류에 대한 교정을 시도하고, 오류 유형들이 문장 내에서 어떤 분포를 가지는지 알아본다. 약 617만 어절의 말뭉치를 이용하여 해당 형태와 다른 성분들과의 관련성을 조사하여 교정 방법을 제시하고, 형태소 분석을 하여 교정을 행한다. 코퍼스 655만 어절 대상으로 실험한 결과 84.6%의 교정률을 보였다. 본 논문에서 제시한 교정 방법은 기존의 교정 시스템에 추가되어 교정 시스템의 전체 교정률을 향상시킬 수 있다. 또한 이와 비슷한 유형의 다른 어휘 교정에 대한 기초 자료로 사용될 수 있을 것이다.
In the era of the 4-th industrial revolution, the concept of smart factory is emerging. There are efforts to predict the occurrences of facility errors which have negative effects on the utilization and productivity by using data analysis. Data composed of the situation of a facility error and the type of the error, called the facility error log, is required for the prediction. However, in many manufacturing companies, the types of facility error are not precisely defined and categorized. The worker who operates the facilities writes the type of facility error in the form with unstructured text based on his or her empirical judgement. That makes it impossible to analyze data. Therefore, this paper proposes a framework for constructing a phrase network to support the identification and classification of facility error types by using facility error logs written by operators. Specifically, phrase indicating the types are extracted from text data by using dictionary which classifies terms by their usage. Then, a phrase network is constructed by calculating the similarity between the extracted phrase. The performance of the proposed method was evaluated by using real-world facility error logs. It is expected that the proposed method will contribute to the accurate identification of error types and to the prediction of facility errors.
Journal of Elementary Mathematics Education in Korea
/
v.24
no.1
/
pp.1-30
/
2020
This study was carried out in order to identify the error types of statistical graphs for statistical literacy education. We analyze the meaning of using graphs in statistical problem solving, and identify categories, frequencies, and contexts as the components of statistical graphs. Error types of representing categories and frequencies make statistics consumers see incorrect distributions of data by subjective point of view of statistics producers and visual illusion. Error types of providing contexts hinder the interpretation of statistical information by concealing or twisting the contexts of data. Moreover, the findings show that tasks provide standardized frame already for drawing graphs in order to avoid errors and pay attention to the process of drawing the graph rather than statistical literacy for analyzing data. We suggest some implications about statistical literacy education, ethical problems, and knowledge for teaching to be considered when teaching the statistical graph in elementary mathematics classes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.