• Title/Summary/Keyword: 오류 유형 분류

Search Result 102, Processing Time 0.021 seconds

국내 원자력발전소 인적오류사례의 추이 분석

  • 이정운;박근옥
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.63-75
    • /
    • 1996
  • 국내 원자력발전소의 발전정지사례에 대해 원전 종사원이 분석한 자료를 수록하여 발간하는 원자력발전소 발전정지사례집을 이용하여 인적오류가 개입된 것으로 판단된 총77건의 불시정지 사례를 추출하여, 인적오류 저감의 우선순위가 높은 원자력발전소 작업분야를 도출하기 위한 분 석을 수행하였다. 이를 이하여, 먼저 인적오류가 개입된 발전소 계통, 인적오유 발생시의 작업상 황 및 작업유형, 그리고인적오류의 유형에 대한 분류체계를 작성하였다. 발전소 근무 경험을 바 탕으로 사례별로 발전정지에 가장 직접적인 영향을 미친 작업행위를 구분하고, 이 행위에 대해 작성된 분류체계의 해당항목을 판정하였다. 이 사례별 분석결과를 이용하여 발전소 계통, 작업상 황, 작업유형, 오류유형 등, 4가지 항목에 대하여 오류발생의 추이를 분석하였으며, 또한 발전소 계통과 작업상황, 계통과 작업유형, 작업상황과 작업유형, 작업유형과 오류유형 등, 항목간 오류 발생 연관성을 조사하였다. 이 결과로 인적오류의 발생률이 높은 발전소 계통, 작업상황, 작업유형 및 오류유형이 구분되었다.

  • PDF

Categorization and Analysis of Error Types in the Korean Speech Recognition System (한국어 음성 인식 시스템의 오류 유형 분류 및 분석)

  • Son, Junyoung;Park Chanjun;Seo, Jaehyung;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.144-151
    • /
    • 2021
  • 딥러닝의 등장으로 자동 음성 인식 (Automatic Speech Recognition) 기술은 인간과 컴퓨터의 상호작용을 위한 가장 중요한 요소로 자리 잡았다. 그러나 아직까지 유사 발음 오류, 띄어쓰기 오류, 기호부착 오류 등과 같이 해결해야할 난제들이 많이 존재하며 오류 유형에 대한 명확한 기준 정립이 되고 있지 않은 실정이다. 이에 본 논문은 음성 인식 시스템의 오류 유형 분류 기준을 한국어에 특화되게 설계하였으며 이를 다양한 상용화 음성 인식 시스템을 바탕으로 질적 분석 및 오류 분류를 진행하였다. 실험의 경우 도메인과 어투에 따른 분석을 각각 진행하였으며 이를 통해 각 상용화 시스템별 강건한 부분과 약점인 부분을 파악할 수 있었다.

  • PDF

The Analysis of Relationship between Academic Achievement Level of Concept Learning and Error Type in Online Programming Course (온라인 프로그래밍 개념학습 성취수준과 오류유형과의 관계 분석)

  • Kim, Jiseon;Kim, Yungsik
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.5
    • /
    • pp.43-51
    • /
    • 2014
  • This study has purpose on analyzing the error types which are identified after middle and high school students perform the online programming assignments and also has the purpose on the analysis of correlation between the frequency of error occurrence according to academic achievement level in programming concept learning and types of errors analyzed previously. For this study, the syntax, logical, and coding errors are analyzed from the performed results of programming research assignment for 88 students. Analyzed results show that the logical error has the highest occurrence rate of 69.3% among three types of errors, and it has been shown meaningful difference in the frequency of error occurrence between three achievement level groups of high, middle, and low. In the correlation analysis of achievement level and error types, it shows negative relationship between logical error and coding error, and therefore it can be concluded that as achievement level is higher, both logical and coding errors tend to occur less. In the correlation analysis in error types, it shows positive relationship between syntax error and coding error.

  • PDF

Classification and analysis of error types for deep learning-based Korean spelling correction (딥러닝 기반 한국어 맞춤법 교정을 위한 오류 유형 분류 및 분석)

  • Koo, Seonmin;Park, Chanjun;So, Aram;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.65-74
    • /
    • 2021
  • Recently, studies on Korean spelling correction have been actively conducted based on machine translation and automatic noise generation. These methods generate noise and use as train and data set. This has limitation in that it is difficult to accurately measure performance because it is unlikely that noise other than the noise used for learning is included in the test set In addition, there is no practical error type standard, so the type of error used in each study is different, making qualitative analysis difficult. This paper proposes new 'error type classification' for deep learning-based Korean spelling correction research, and error analysis perform on existing commercialized Korean spelling correctors (System A, B, C). As a result of analysis, it was found the three correction systems did not perform well in correcting other error types presented in this paper other than spacing, and hardly recognized errors in word order or tense.

Classification of Statistical Error Types Through Analysis of Wind and Flood Damage History Data (풍수해 피해이력 자료 분석을 통한 통계적 오류유형 분류)

  • Kim, Ku-Yoon;Lee, Mi-Ran;Lee, Jun-Woo
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.135-136
    • /
    • 2022
  • 최근 기후변화의 영향으로 태풍 및 국지성 집중호우 등 자연재해 발생빈도가 증가함에 따라 풍수해로 인한 인명피해와 재산피해가 증가하고 있다. 국내에서는 재해연보를 통해 자연재난 피해이력 통계정보를 제공하고 있으며, 당해연도 자연재해상황을 기간별, 시도별, 수계별, 월별, 원인별 총괄통계와 인명피해, 시설피해와 관련된 피해면적, 피해액, 복구액 등 세부내용으로 구성하여 정보를 제공하고 있다. 행정안전부는 국가재난정보시스템을 통해 취합된 지자체 피해이력 통계자료를 입력하고 있는데 입력하는 과정에서 누락, 오기 등의 오류가 발생할 가능성이 있다. 경제적 손실이 증가하고 있는 풍수해 재난이 발생하게 될 경우 피해비용 집계, 피해액 산정 등 정확한 자료로서 구축되지 않으면 연구 및 분석을 수행하기 위한 통계자료로서 활용될 수 없다. 이러한 문제점을 개선하기 위해서 본 연구에서는 1985년부터 2018년까지 재해연보에 대해서 기간별-시군구별 자료분석을 통해 피해이력 데이터 오류 유형에 대해 분류하였다.

  • PDF

Korean Spelling Corrector Based on Corpus Analysis (말뭉치를 기반으로 한 한국어 철자 교정기의 구현)

  • Lee, Byeong-Hun;Yun, Jun-Tae;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.285-293
    • /
    • 1993
  • 대량의 말뭉치에서 나타나는 맞춤법 오류의 대부분은 타자수의 입력 실수로 인한 것이다. 맞춤법 오류의 유형은 크게 띄어 쓰기 오류, 철자 오류, 띄어 쓰기와 철자의 복합 오류의 세 가지로 나타난다. 이 중, 철자 오류를 표층 형태만으로 표준어 오류, 조사/어미 오류, 자소 대치 오류로 유형을 분류하였다. 본 논문은 300만 말뭉치에서 형태소 분석이 실패한 맞춤법 오류 어절 중에서 띄어 쓰기와 철자 오류를 분석하여, 각 오류 유형에 따른 교정 방법과 자소 대치 규칙 베이스를 이용한 교정 방법을 구현하였다. 또한 형태소 분석기를 거친 40만 어절 사전을 이용한 분석기로 기존의 형태소 분석기를 대치시켜 교정 어절을 검증하였고, 위의 사전에서 추출한 순위 결정 요소와 Heuristic 정보를 이용하여 각 후보 어절에 대한 가중치를 계산하고 가능성이 높은 교정 어절을 제시하는 시스템을 구현하였다.

  • PDF

Comparison of Reading, Writing Fluency of the Underachieving Children and Stuttering Children and School-Aged Children (학령기 말더듬아동의 읽기유창성 및 쓰기유창성 비교연구)

  • Park, Jin-Won
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.8
    • /
    • pp.476-484
    • /
    • 2014
  • The purpose of this study was to investigate the characteristics of reading, writing fluency of the underachieving children and stuttering children and school-aged children and frequency of errors. The participants were 15 underachieving children and 15 stuttering children and 15 school-aged children without disabilities. All participants were required to conduct reading, writing, speaking tasks. First, work for the reading tasks were different among the underachieving children and stuttering children and school-aged children. Second, writing tasks were not different among the groups in the writing fluency, but it was lacking in accuracy, which is stuttering, speaking fluency as well as their language fluency is suggesting the need for diagnosis and intervention. Third, this type of errors of writing tasks is showed higher levels of ommission, substitution, grammatical errors in the underachieving children group. The therapy of reading of stuttering also consider a treatment program that can be configured in the combined writing tasks.

A method for morphological correction of ambiguous error (한글 문서에서 형태적 중의 오류의 교정)

  • Kim, Min-Ju;Jeong, Jun-Ho;Lee, Hyeon-Ju;Choe, Jae-Hyeok;Kim, Hang-Jun;Lee, Sang-Jo
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.41-48
    • /
    • 1998
  • 교정 시스템에 나타나는 오류 유형들 중에는 전체적인 교정률에 차지하는 비중은 적지만 출현할 때마다 틀릴 가능성이 아주 높은 오류들이 있다. 기존의 교정 시스템에서는 이러한 오류들에 대한 처리가 미흡한데, 철자 오류와 띄어쓰기 오류 중 형태가 비슷하거나 같은 형태가 다른 기능을 함으로써 발생하는 오류들이다. 이러한 오류는 일반 문서 작성자뿐만 아니라 한글 맞춤법에 대해 어느 정도 지식을 가진 사람의 경우에도 구분이 모호하다. 복합 명사와 미등록어를 제외한 오류 중 약 30%가 여기에 속한다. 따라서 본 논문에서는 이러한 오류 유형들을 분류하고, 이 중에서 빈번하게 출현하는 오류에 대한 교정을 시도하고, 오류 유형들이 문장 내에서 어떤 분포를 가지는지 알아본다. 약 617만 어절의 말뭉치를 이용하여 해당 형태와 다른 성분들과의 관련성을 조사하여 교정 방법을 제시하고, 형태소 분석을 하여 교정을 행한다. 코퍼스 655만 어절 대상으로 실험한 결과 84.6%의 교정률을 보였다. 본 논문에서 제시한 교정 방법은 기존의 교정 시스템에 추가되어 교정 시스템의 전체 교정률을 향상시킬 수 있다. 또한 이와 비슷한 유형의 다른 어휘 교정에 대한 기초 자료로 사용될 수 있을 것이다.

  • PDF

An Artificial Neural Network Based Phrase Network Construction Method for Structuring Facility Error Types (설비 오류 유형 구조화를 위한 인공신경망 기반 구절 네트워크 구축 방법)

  • Roh, Younghoon;Choi, Eunyoung;Choi, Yerim
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.21-29
    • /
    • 2018
  • In the era of the 4-th industrial revolution, the concept of smart factory is emerging. There are efforts to predict the occurrences of facility errors which have negative effects on the utilization and productivity by using data analysis. Data composed of the situation of a facility error and the type of the error, called the facility error log, is required for the prediction. However, in many manufacturing companies, the types of facility error are not precisely defined and categorized. The worker who operates the facilities writes the type of facility error in the form with unstructured text based on his or her empirical judgement. That makes it impossible to analyze data. Therefore, this paper proposes a framework for constructing a phrase network to support the identification and classification of facility error types by using facility error logs written by operators. Specifically, phrase indicating the types are extracted from text data by using dictionary which classifies terms by their usage. Then, a phrase network is constructed by calculating the similarity between the extracted phrase. The performance of the proposed method was evaluated by using real-world facility error logs. It is expected that the proposed method will contribute to the accurate identification of error types and to the prediction of facility errors.

An Analysis on Error Types of Graphs for Statistical Literacy Education: Ethical Problems at Data Analysis in the Statistical Problem Solving (통계적 소양 교육을 위한 그래프 오류 유형 분석: 자료 분석 단계에서의 통계 윤리 문제)

  • Tak, Byungjoo;Kim, Dabin
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.24 no.1
    • /
    • pp.1-30
    • /
    • 2020
  • This study was carried out in order to identify the error types of statistical graphs for statistical literacy education. We analyze the meaning of using graphs in statistical problem solving, and identify categories, frequencies, and contexts as the components of statistical graphs. Error types of representing categories and frequencies make statistics consumers see incorrect distributions of data by subjective point of view of statistics producers and visual illusion. Error types of providing contexts hinder the interpretation of statistical information by concealing or twisting the contexts of data. Moreover, the findings show that tasks provide standardized frame already for drawing graphs in order to avoid errors and pay attention to the process of drawing the graph rather than statistical literacy for analyzing data. We suggest some implications about statistical literacy education, ethical problems, and knowledge for teaching to be considered when teaching the statistical graph in elementary mathematics classes.