이 연구는 우리나라 정부의 공공데이터 공개 제도에 따른 공공데이터 품질관리체계를 이해하고, 공공기관이 신뢰성 있는 데이터를 위해 품질 점검을 시행하면서도 효과적인 관리를 하기 위한 방안에 관한 것이다. 공공데이터법과 공공데이터 품질관리체계를 이해하고, 저품질 공공데이터의 오류와 발생원인에 대해 알아본다. 오류 데이터 분석을 통한 보안위협에 따른 위험 분류를 통해 효과적인 대응방안을 도출하는 것을 목표로 한다. 이를 위해 공공데이터를 데이터 품질 점검하여 도메인별 오류데이터를 살펴보고, 오류데이터 발생원인에 대한 분석을 통해 보안위협과 공공데이터를 사용하는 사용자 측면과 기관 측면의 보안 문제를 분류하였다. 분류된 오류 발생원인별 보안문제를 기준으로 데이터 품질관리를 통한 개선방향을 제시하고, 품질관리 오류 개선방향별 데이터보안 정책별 보안기술을 비교 정리하여, 데이터 보안기술을 통한 품질관리 오류 개선 연계 대응방안을 제안하였다.
KERIS의 대학도서관 종합목록은 330개 대학도서관이 가입하여 570만 레코드를 보유하고 있는 국내 최대의 목록이다. 그러나 각 회원기관이 이미 구축한 DB를 짧은 기간 내 통합하면서 중복 및 오류 레코드가 많이 포함되어 있기 때문에 검색의 효율성이 떨어진다는 지적이 있다. 따라서 본 연구에서는 전체 자료의 10%를 차지하는 학위논문 데이터 1000건을 대상으로 오류 데이터의 유형을 분석함으로서 데이터의 품질을 측정하고 기계적으로 오류데이터를 색출할 수 있는 방안을 제시하였다. 분석 결과 오류데이터는 전체 표본 DB의 30%를 차지하였고 발생하는 주요 원인은 1)입력오류 2)MARC의 사용 오류 3)목록규칙의 적용 오류가 가장 큰 원인으로 나타났다.
DASE(Digital TV Application Software Environment)는 데이터 방송을 위한 국제 표준으로 MPEG-2 TS(Moving Picture Experts Group-2 Transport Stream) 형식의 데이터를 처리한다. 소스코드 대신 입력 데이터 명세 정보만을 공개하는 특성상 DASE 시스템의 오류를 테스트하기 위해서는 테스트 데이터에 오류를 삽입하는 방법이 적합하고 이를 위해 MPEG-2 표준을 위한 오류 항목을 개발이 요구된다. 본 논문에서는 관계형 데이터 베이스를 위한 데이터 분류인 Kim’s et al 분류를 근거로 하여 MPEG-2 표준을 위한 오류 항목을 개발하였다. 이는 DASE 시스템의 오류 삽입 테스트 기법에 유용하게 사용될 수 있을 것이다.
맞춤법 교정이란 주어진 문장에서 나타나는 철자 및 맞춤법 오류들을 올바르게 교정하는 것을 뜻하며 맞춤법 교정 시스템이란 컴퓨터가 이를 자동으로 수행하는 것을 의미한다. 본 논문에서는 맞춤법 교정을 기계번역의 관점으로 바라보고 문제를 해결하였다. 소스문장에 맞춤법 오류문장, 타겟 문장에 올바른 문장을 넣어 학습시키는 방법을 제안한다. 본 논문에서는 단일 말뭉치로 한국어 맞춤법 병렬 말뭉치를 구성하는 방법을 제안하며 G2P(Grapheme to Phoneme)를 이용한 오류 데이터 생성, 자모 단위 철자 오류데이터 생성, 통번역 데이터 기반 오류 데이터 생성 크게 3가지 방법론을 이용하여 맞춤법 오류데이터를 생성하는 방법론을 제안한다. 실험결과 GLEU 점수 65.98의 성능을 보였으며 44.68, 39.55의 성능을 보인 상용화 시스템보다 우수한 성능을 보였다.
최근 e-Business 어플리케이션을 통합하기 위한 개념으로 서비스 지향구조 (Service Oriented Architecture)에 기본 원리를 둔 분산 소프트웨어 통합 기술이 널리 확산되고 있다. 따라서 각 서비스간의 데이터 정제기법을 통한 신뢰성 있는 데이터 교환은 필수적 요소로 자리 잡고 있다. 본 논문에서는 시스템에 상호작용 시 교환되는 데이터의 오류를 탐지하고 정제하기 위한 서비스로 사용자의 데이터 제약조건을 결합 시키는 변환 과정, 오류를 탐지하는 탐지과정, 탐지된 오류를 정제하고, 정보를 보여주는 정제과정으로 이루어진 오류 데이터 정제 서비스(DDCS; Dirty Data Cleansing Service)를 구현하고, 이를 이용하여 SOA기반 ESB상에서 통합된 시스템들 간에 상호 작용하는 오류 데이터 정제를 보장하는 서비스를 개발한다.
통계 기반 접근 방법을 이용한 품사태깅에서 태깅 정확도는 훈련 데이터의 양에 좌우될 뿐 아니라, 말뭉치가 충분할지라도 수작업으로 구축한 말뭉치의 경우 항상 오류의 가능성을 내포하고 있으며 언어의 특성상 통계적으로 신뢰할만한 데이터의 수집에도 어려움이 따른다. 훈련 데이터로 사용되는 말뭉치는 많은 사람들이 수작업으로 구축하므로 작업자 중 일부가 언어에 대한 지식이 부족하다거나 주관적인 판단에 의한 태깅 실수를 포함할 수도 있기 때문에 단순한 저빈도와 관련된 잡음 외의 오류들이 포함될 수 있는데 이러한 오류들은 재추정이나 평탄화 기법으로 해결될 수 있는 문제가 아니다. 본 논문에서는 HMM(Hidden Markov Model)을 이용한 한국어 품사 태깅에서 재추정 후 여전히 존재하는 말뭉치의 잡음에 인한 태깅 오류 해결을 위해 비터비 알고리즘적용 단계에서 데이터 부족과 말뭉치의 오류로 인해 문제가 되는 부분을 찾아내고 규칙을 통해 수정을 하여 태깅 결과를 개선하는 방안을 제안한다. 실험결과는 오류가 존재하는 말뭉치를 사용하여 구현된 HMM과 비터비 알고리즘을 적용한 태깅 정확도에 비해 오류를 수정하는 과정을 거친 후 정확도가 향상됨을 보여준다.
기계 번역에서 품질 검증은 정답 문장 없이 기계 번역 시스템에서 생성된 번역의 품질을 자동으로 추정하는 것을 목표로 한다. 일반적으로 이 작업은 상용화된 기계 번역 시스템에서 후처리 모듈 역할을 하여 사용자에게 잠재적인 번역 오류를 경고한다. 품질 검증의 하위 작업인 치명적인 오류 탐지는 번역의 오류 중에서도 정치, 경제, 사회적으로 문제를 일으킬 수 있을 만큼 심각한 오류를 찾는 것을 목표로 한다. 본 논문은 치명적인 오류의 유무를 분류하는 것을 넘어 문장에서 치명적인 오류가 존재하는 부분을 제시하기 위한 새로운 데이터셋과 모델을 제안한다. 이 데이터셋은 거대 언어 모델을 활용하는 구축 방식을 채택하여 오류의 구체적인 범위를 표시한다. 또한, 우리는 우리의 데이터를 효과적으로 활용할 수 있는 다중 작업 학습 모델을 제시하여 오류 범위 탐지에서 뛰어난 성능을 입증한다. 추가적으로 언어 모델을 활용하여 번역 오류를 삽입하는 데이터 증강 방법을 통해 보다 향상된 성능을 제시한다. 우리의 연구는 기계 번역의 품질을 향상시키고 치명적인 오류를 줄이는 실질적인 해결책을 제공할 것이다.
미디어 데이터는 별도의 채널을 할당하여 채널 별로 단일 미디어 정보를 순서대로 전송 함으로서 동일 미디어 데이터는 순서가 변할 우려는 없다. 그러나 이러한 다채널 방식에서는 미디어간 동기화 문제를 유발 시키는데 수신 측에서는 새로 발생된 데이터의 시작 시점을 서로 맞춤으로서 미디어간 동기화를 실현하였다. 새로운 미디어의 시작 시 항상 제어 데이터를 먼저 전송하여 새로운 미디어 데이터의 생성을 모든 참여자 프로세스에 알린다. 제안하는 오류 제어는 홈 네트워크 환경에서 멀티미디어 응용 개발 프레임워크에서 오류 발생시 오류를 하나의 미디어로 취급하며 멀티미디어 응용 개발 프레임워크에서 다채널 방식을 사용한다.
본 연구에서는 일련의 연구에서 수집된 영작문 오류 유형의 정제된 자료를 토대로 연관 규칙을 생성하고, 학습을 통해서 효용성이 검증된 연관 규칙을 활용해서 영작문 데이터의 형태 통사 오류를 자동으로 탐지한다. 영작문 데이터에서 형태 통사 오류를 찾아내는 작업은 많은 시간과 자원이 소요되는 작업이므로 자동화가 필수적이다. 기존의 연구들이 통계적 모델을 활용한 어휘적 오류에 치중하거나 언어 이론적 틀에 근거한 통사 처리에 집중하는 반면에, 본 연구는 데이터 마이닝을 통해서 정제된 데이터에서 연관 규칙을 생성하고 이를 검증한 후 형태 통사 오류를 감지한다. 이전 연구들에서는 이론적 틀에 맞추어진 규칙 생성이나 언어 모델 생성을 위한 대량의 코퍼스 데이터와 같은 다량의 지식 베이스 생성이 필수적인데, 본 연구는 적은 양의 정제된 데이터를 활용한다. 영작문 오류 유형의 형태 통사 연관 규칙을 생성하기 위해서 Apriori 알고리즘을 활용하였다. 알고리즘을 통해서 생성된 연관 규칙 중 잘못된 규칙이 생성될 가능성이 있으므로, 상관성 검정, 코사인 유사도와 같은 규칙 효용성의 통계적 검증을 활용해서 타당한 규칙만을 학습하였다. 이를 통해서 축적된 연관 규칙들을 영작문 오류를 자동으로 탐지하는 실험에 활용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.