• 제목/요약/키워드: 오디오 이벤트 검출

검색결과 13건 처리시간 0.026초

깊은 신경망을 이용한 오디오 이벤트 검출 (Audio Event Detection Using Deep Neural Networks)

  • 임민규;이동현;박호성;김지환
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권1호
    • /
    • pp.183-190
    • /
    • 2017
  • 본 논문에서는 깊은 신경망을 이용한 오디오 이벤트 검출 방법을 제안한다. 오디오 입력의 매 프레임에 대한 오디오 이벤트 확률을 feed-forward 신경망을 적용하여 생성한다. 매 프레임에 대하여 멜 스케일 필터 뱅크 특징을 추출한 후, 해당 프레임의 전후 프레임으로부터의 특징벡터들을 하나의 특징벡터로 결합하고 이를 feed-forward 신경망의 입력으로 사용한다. 깊은 신경망의 출력층은 입력 프레임 특징값에 대한 오디오 이벤트 확률값을 나타낸다. 연속된 5개 이상의 프레임에서의 이벤트 확률값이 임계값을 넘을 경우 해당 구간이 오디오 이벤트로 검출된다. 검출된 오디오 이벤트는 1초 이내에 동일 이벤트로 검출되는 동안 하나의 오디오 이벤트로 유지된다. 제안된 방법으로 구현된 오디오 이벤트 검출기는 UrbanSound8K와 BBC Sound FX자료에서의 20개 오디오 이벤트에 대하여 71.8%의 검출 정확도를 보였다.

멀티 모달 정보 분석을 이용한 TV 골프 방송 프로그램에서의 이벤트 검출 및 요약 (Event Detection and Summarization of TV Golf Broadcasting Program using Analyzed Multi-modal Information)

  • 남상순;김형국
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 추계학술대회
    • /
    • pp.173-176
    • /
    • 2009
  • 본 논문에서는 영상 정보와 오디오 정보 분석을 이용하여 TV 골프 방송 프로그램에서 중요 이벤트 구간을 검출하고 요약 하는 알고리즘을 제안한다. 제안하는 알고리즘에서는 입력되는 TV 골프 동영상을 영상 신호와 오디오 신호로 분리한 후에, 연속적인 오디오 스트림을 내용 기반의 오디오 구간으로 분류한 뒤 오디오 이벤트 구간을 검출하고, 이와 병렬적으로 영상정보에서 선수들의 플레이 장면을 검출한다. 플레이 장면 검출에 있어서는 방송 환경이나 날씨 등의 변화하는 다양한 조건에 대해 플레이 장면에 대한 오프라인 모델과 함께 경기 내에서 발생한 온라인 모델에 대한 학습을 혼합 적용함으로써 검출 성능을 높였다. 오디오 신호로부터 관중들의 박수소리와 스윙 사운드를 통해 검출된 오디오 이벤트와 플레이 장면은 이벤트 장면 검출 및 요약본 생성을 위해 사용된다. 제안된 알고리즘은 멀티 모달 정보를 이용하여 이벤트 구간 검출을 수행함으로써 중요 이벤트 구간 검출의 정확도를 높일 수 있었고, 검출된 이벤트 구간에 대한 요약본 생성을 통해 골프 경기를 시청하는 사용자가 원하는 부분을 빠르게 브라우징하여 시청하는 것이 가능하여 높은 사용자 만족도를 얻을 수 있었다.

  • PDF

지능형 PVR을 위한 축구 동영상 하이라이트 요약 (Soccer Video Highlight Summarization for Intelligent PVR)

  • 김형국;신동
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 추계학술대회
    • /
    • pp.209-212
    • /
    • 2009
  • 본 논문에서는 MDCT기반의 오디오 특징과 영상 특징을 이용하여 축구 동영상의 하이라이트를 효과적으로 요약하는 방식을 제안한다. 제안하는 방식에서는 입력되는 축구 동영상을 비디오 신호와 오디오 신호로 분리한 후에, 분리된 연속적인 오디오 신호를 압축영역의 MDCT계수를 통해 이벤트 사운드별로 분류하여 오디오 이벤트 후보구간을 추출한다. 입력된 비디오 신호에서는 장면 전환점을 추출하고 추출된 장면 전환점으로부터 페널티 영역을 검출한다. 검출된 오디오 이벤트 후보구간과 검출된 페널티 영역장면을 함께 결합하여 축구 동영상의 이벤트 장면을 검출한다. 검출된 페널티 영역 장면을 통해 검출된 이벤트 구간을 다른 이벤트 구간보다 더 높은 우선순위를 갖는 하이라이트로 선정하여 요약본이 생성된다. 생성된 하이라이트 요약본의 평가는 precision과 recall을 통해 정확도를 평가하였다.

  • PDF

멀티 모달 분석을 통한 야구 동영상에서의 실시간 중요 이벤트 검출 알고리즘 (Rapid Detection of Important Events in Baseball Video Using multi-Modal Analysis)

  • 이진호;김형국
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 추계학술대회
    • /
    • pp.133-136
    • /
    • 2009
  • 본 논문에서는 야구 동영상에서 실시간으로 중요 이벤트 장면을 검출하는 알고리즘을 제안한다. 제안하는 알고리즘은 영상정보를 분석하여 Pitching 신과 Close Up 신을 추출하여 Play 구간을 검출하고, 오디오 정보를 분석하여 오디오 이벤트 구간을 검출한다. Play 구간의시작인 Pitching 신을 검출하기 위해서는 오프라인 모델과 온라인 모델을 혼용하여 다양한 환경에 상관없이 높은 성능을 보일 수 있도록 하였으며, 아나운서의 억양 및 관중의 함성의 고조도가 높아지는 구간을 기반으로 검출된 오디오 이벤트 구간을 영상 정보 분석을 통해 획득된 Play 장면구간을 결합하여 중요 이벤트 장면 검출의 정확도를 높일 수 있도록 하였다. 실험에 의하면 제안하는 알고리즘은 1초의 동영상 데이터를 처리하는데 0.024초의 소요 시간이 필요하고, 0.89의 Recall과 0.975의 Precision 검출 성능을 보임을 알 수 있었다.

  • PDF

다채널 오디오 특징값 및 게이트형 순환 신경망을 사용한 다성 사운드 이벤트 검출 (Polyphonic sound event detection using multi-channel audio features and gated recurrent neural networks)

  • 고상선;조혜승;김형국
    • 한국음향학회지
    • /
    • 제36권4호
    • /
    • pp.267-272
    • /
    • 2017
  • 본 논문에서는 다채널 오디오 특징값을 게이트형 순환 신경망(Gated Recurrent Neural Networks, GRNN)에 적용한 효과적인 다성 사운드 이벤트 검출 방식을 제안한다. 실생활의 사운드는 여러 사운드 이벤트가 겹쳐있는 다성사운드로, 기존의 단일 채널 오디오 특징값으로는 다성 사운드에서 개별적인 이벤트의 검출이 어렵다는 한계가 있다. 이에 본 논문에서는 다채널 오디오 신호를 기반으로 추출된 특징값을 사용하여 다성 사운드 이벤트 검출에 적용하였다. 또한 본 논문에서는 현재 순환 신경망에서 가장 높은 성능을 보이는 장단기 기억 신경망(Long Short Term Memory, LSTM) 보다 간단한 GRNN을 분류에 적용하여 다성 사운드 이벤트 검출의 성능을 더욱 향상시키고자 하였다. 실험결과는 본 논문에서 제안한 방식이 기존의 방식보다 성능이 더 뛰어나다는 것을 보인다.

Attention CRNN에 기반한 오디오 이벤트 검출 (Audio Event Detection Based on Attention CRNN)

  • 곽진열;정용주
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.465-472
    • /
    • 2020
  • 최근 들어, 오디오 이벤트 검출을 위하여 다양한 딥뉴럴네트워크 기반의 방법들이 제안되어 왔다. 본 연구에서는 베이스라인 CRNN(Convolutional Recurrent Neural Network) 구조에 attention 방식을 도입함으로서 오디오 이벤트 검출의 성능을 향상시키고자 하였다. 베이스라인 CRNN의 입력단에 context gating을 적용하고 출력단에 attention layer을 추가하였다. 또한, 프레임(frame) 단위의 강전사 레이블(strong label)정보 뿐만 아니라 클립(clip) 단위의 약전사 레이블(weakly label) 오디오 데이터를 이용한 학습을 통하여 보다 나은 성능을 이루고자 하였다. DCASE 2018/2019 Challenge Task 4 데이터를 이용한 오디오 이벤트 검출 실험에서 제안된 attention 기반의 CRNN을 통하여 기존의 CRNN 방식에 비해서 최대 66%의 상대적 F-score 향상을 얻을 수 있었다.

딥 뉴럴네트워크 기반의 소리 이벤트 검출 (Sound Event Detection based on Deep Neural Networks)

  • 정석환;정용주
    • 한국전자통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.389-396
    • /
    • 2019
  • 본 논문에서는 다양한 구조의 딥 뉴럴 네트워크를 소리 이벤트 검출을 위하여 적용하였으며 공통의 오디오 데이터베이스를 이용하여 그들 간의 성능을 비교하였다. FNN, CNN, RNN 그리고 CRNN이 주어진 오디오데이터베이스 및 딥 뉴럴 네트워크의 구조에 최적화된 하이퍼파라미터 값을 이용하여 구현되었다. 구현된 방식 중에서 CRNN이 모든 테스트 환경에서 가장 좋은 성능을 보였으며 그 다음으로 CNN의 성능이 우수함을 알 수 있었다. RNN은 오디오 신호에서의 시간 상관관계를 잘 추적하는 장점에도 불구하고 CNN 과 CRNN에 비해서 저조한 성능을 보임을 확인할 수 있었다.

음성정보 내용분석을 통한 골프 동영상에서의 선수별 이벤트 구간 검색 (Retrieval of Player Event in Golf Videos Using Spoken Content Analysis)

  • 김형국
    • 한국음향학회지
    • /
    • 제28권7호
    • /
    • pp.674-679
    • /
    • 2009
  • 본 논문은 골프 동영상에 포함된 오디오 정보로부터 검출된 이벤트 사운드 구간과 골프 선수이름이 포함된 음성구간을 결합하여 선수별 이벤트 구간을 검색하는 방식을 제안한다. 전체적인 시스템은 동영상으로부터 분할된 오디오 스트림으로부터 잡음제거, 오디오 구간분할, 음성 인식 등의 과정을 통한 자동색인 모듈과 사용자가 텍스트로 입력한 선수 이름을 발음열로 변환하고, 색인된 데이터베이스에서 질의된 선수 이름과 상응하는 음성구간과 연결되는 이벤트 구간을 찾아주는 검색 모듈로 구성된다. 선수이름 검색을 위해서 본 논문에서는 음소 기반, 단어 기반, 단어와 음소를 결합한 하이브리드 방식을 적용한 선수별 이벤트 구간 검색결과를 비교하였다.

청각장애인을 위한 사운드 이벤트 검출 기반 홈 모니터링 시스템 (Home monitoring system based on sound event detection for the hard-of-hearing)

  • 김지연;신승수;김형국
    • 한국음향학회지
    • /
    • 제38권4호
    • /
    • pp.427-432
    • /
    • 2019
  • 본 논문에서는 청각장애인을 위해 양방향 게이트 순환 신경망을 이용한 사운드 이벤트 검출 기반의 홈 모니터링 시스템을 제안한다. 제안된 시스템에서는 우선적으로 효과적인 사운드 이벤트 검출을 위해 패킷손실 은닉을 이용하여 무선 센서 네트워크로 인해 손실된 신호를 복원하고, 멀티채널 상호 상관관계 계수를 이용하여 신뢰할 수 있는 채널을 선택한다. 선택된 채널의 사운드는 이벤트 검출을 위해 두 개의 오디오 채널을 사용하는 양방향 게이트 순환신경망에 적용된다. 검출된 사운드 이벤트는 텍스트로 변환되며, 이와 함께 하모닉/퍼커시브 음원 분리 방식을 통해 햅틱 신호로 변환되어 청각장애인에게 제공된다. 실험결과는 제안한 사운드 검출기반의 성능이 기존 방식보다 더 우수하다는 것과 음원 분리 방식을 통해 사운드를 세밀한 햅틱 신호로 표현할 수 있음을 보인다.

청각 장애인용 홈 모니터링 시스템을 위한 다채널 다중 스케일 신경망 기반의 사운드 이벤트 검출 (Sound event detection based on multi-channel multi-scale neural networks for home monitoring system used by the hard-of-hearing)

  • 이기용;김형국
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.600-605
    • /
    • 2020
  • 본 논문에서는 청각 장애인을 위한 소리 감지 홈 모니터링을 위해 다채널 다중 스케일 신경망을 사용한 사운드 이벤트 검출 방식을 제안한다. 제안하는 시스템에서는 홈 내의 여러 무선 마이크 센서들로부터 높은 신호 품질을 갖는 두 개의 채널을 선택하고, 그 신호들로부터 도착신호 지연시간, 피치 범위, 그리고 다중 스케일 합성 곱 신경망을 로그멜 스펙트로그램에 적용하여 추출한 특징들을 양방향 게이트 순환 신경망 기반의 분류기에 적용함으로써 사운드 이벤트 검출의 성능을 더욱 향상시킨다. 검출된 사운드 이벤트 결과는 선택된 채널의 센서 위치와 함께 텍스트로 변환되어 청각 장애인에게 제공된다. 실험결과는 제안한 시스템의 사운드 이벤트 검출 방식이 기존 방식보다 우수하며 청각 장애인에게 효과적으로 사운드 정보를 전달할 수 있음을 보인다.