• Title/Summary/Keyword: 오디오 딥페이크

Search Result 2, Processing Time 0.018 seconds

CoNSIST: Consist of New Methodologies on AASIST for Audio Deepfake Detection (컨시스트: 오디오 딥페이크 탐지를 위한 그래프 어텐션 기반 새로운 모델링 방법론 연구)

  • Jae Hoon Ha;Joo Won Mun;Sang Yup Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.513-519
    • /
    • 2024
  • Advancements in artificial intelligence(AI) have significantly improved deep learning-based audio deepfake technology, which has been exploited for criminal activities. To detect audio deepfake, we propose CoNSIST, an advanced audio deepfake detection model. CoNSIST builds on AASIST, which a graph-based end-to-end model, by integrating three key components: Squeeze and Excitation, Positional Encoding, and Reformulated HS-GAL. These additions aim to enhance feature extraction, eliminate unnecessary operations, and incorporate diverse information. Our experimental results demonstrate that CoNSIST significantly outperforms existing models in detecting audio deepfakes, offering a more robust solution to combat the misuse of this technology.

Deepfake Detection with Audio Fragile Watermarking (연성 워터마킹 기반 오디오 딥페이크 탐지)

  • Jun-Mo Kim;Changhee Hahn
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.269-270
    • /
    • 2024
  • 디지털 오디오 파일의 보안은 디지털 미디어의 확산과 함께 점차 중요해지고 있다. 특히, 딥페이크와 같은 기술을 이용한 조작이 증가함에 따라, 이를 효과적으로 방지하는 기술이 대두되고 있다. 본 연구에서는 연성 워터마킹 기술을 활용하여, 오디오 파일이 외부 조작에 의해 변경되었을 때 오디오 파일이 의도적으로 파괴하는 방식을 제안한다. 본 논문에서는 연성 워터마크 생성 및 삽입 방법에 관한 자세한 설명을 하고, 연성 워터마킹을 통해 오디오의 변조 여부를 즉각적으로 탐지하는데 어떻게 기여하는지를 보여준다. 제안 기법은 오디오 원본의 무결성을 효과적으로 보호하는 새로운 방법을 제시하며, 디지털 미디어 보안을 강화하는데 중요한 역할을 할 것으로 기대된다.