• Title/Summary/Keyword: 예 연소실

Search Result 59, Processing Time 0.01 seconds

Combustion Characteristics of Methane-Air Pre-mixture in a Closed Vessel(II) (밀폐용기내 메탄-공기 예혼합기의 연소특성(II))

  • 김봉석;이영재;고창조;권철홍
    • Journal of Energy Engineering
    • /
    • v.4 no.1
    • /
    • pp.85-94
    • /
    • 1995
  • 본 연구에서는 최근 차량용 대체연료로서 주목받고 있는 천연가스의 연소특성을 규명하기 위해 밀폐된 정적연소실을 이용, 당량비, 초기압력 및 점화위치 변화에 따른 연소실험을 행하였으며, 그 결과 다음과 같은 결론을 얻었다. 메탄-공기 예혼합기의 화염전파과정은 이론혼합기 부근에서 구면형으로 진행되는데 반해, 과농 또는 과박 혼합기 그리고 점화위치가 연소실 벽면에 가까울수록 타원형으로 진행되며, 초기압력이 증가함에 따라 화염전파는 느려진다. 화염전파속도와 연소 속도는 초기압력이 낮고 점화위치가 연소실 중심에 가까울수록 빠르며, 당량비 1.0∼1.1 사이에서 최대치를 보인다.

  • PDF

The Interaction of Vortex Shedding Behavior in Hybrid Rocket Combustion (와류간섭에 의한 하이브리드로켓 연소 특성)

  • Park, Kyung-Soo;Lee, Chang-Jin;Shin, Kyung-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.244-248
    • /
    • 2012
  • A series of hybrid rocket combustion experiments were carried out with PMMA/GOx changing diameter and length of the disk installed at pre-chamber. The disk can generate vortex shedding flow and change flow conditions prior to entering the fuel grain which could also alter the combustion characteristics and pressure oscillations. The interaction of vortex shedding in the pre-chamber and small-scale vortices adjacent to burning surfaces by using combustion test.

  • PDF

Influence of piston bowl geometry on the in-cylinder flow of HCCI Engine (HCCI 엔진의 실린더 내 유동에 대한 피스톤 보울 형상의 영향)

  • Nam, Seung Man;Lee, Kye Bock
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.399-405
    • /
    • 2013
  • The gas motion inside the engine cylinder plays a very important role in determining the thermal efficiency of an internal combustion engine. A precise information of in-cylinder three dimensional complex gas motion is crucial in optimizing engine design. Homogeneous charge compression ignition (HCCI) engine is a combustion concept, which is a hybrid between Otto and Diesel engine. The turbulent diffusion leads to increased rates of momentum, heat and mass transfer. The in-cylinder turbulence flow was found to affect the present HCCI combustion mainly through its influence on the wall heat transfer. This study investigates the effect of piston geometry shape on the turbulent flow characteristics of in-cylinder from the numerical analysis using the LES model and the results obtained can offer guidelines of the combustion geometries for better combustion process and engine performance.

An Experimental Study on Combustion Instability Characteristics of Various Fuel-Air Mixing Section Geometry in a Model Dump Shape Combustor (모형 덤프 연소기에서 혼합기 유입구 길이 변화에 따른 연소불안정 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Yoon, Ji-Su;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.187-199
    • /
    • 2011
  • The main objective of this study was investigation of natural gas flames in a lean premixed swirl-stabilized dump combustor with an attention focused on the effect of the various fuel-air mixing section geometry on the combustion instability characteristics. The multi-channel dynamic pressure transducers were located on the combustor and inlet mixing section region to observe combustion pressure oscillation and difference phase at each dynamic pressure measurement results. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The combustor and mixing section length was varied in order to have different acoustic resonance characteristics from 800 to 1800 mm in combustor and 470, 550, 870 mm in mixing section. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of coupled with the combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

  • PDF

An Experimental Study on Combustion Instability Characteristics of Various Fuel-Air Mixing Section Geometry in a Model Dump Shape Combustor (모형 덤프 연소기에서 혼합기 유입구 길이 변화에 따른 연소불안정 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Yoon, Ji-Su;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.57-69
    • /
    • 2012
  • The main objective of this study was investigation of natural gas flames in a lean premixed swirl-stabilized dump combustor with an attention focused on the effect of the various fuel-air mixing section geometry on the combustion instability characteristics. The combustor and mixing section length was varied in order to have different acoustic resonance characteristics from 800 to 1800 mm in combustor and 470, 550, 870 mm in mixing section. We observed two dominant instability frequencies in this study. Lower frequencies were associated with a fundamental longitudinal mode of combustor length. Higher frequencies were related to secondary longitudinal mode of coupled with the combustor and mixing section. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

Acoustic Field Analysis of a Combustor-nozzle System with a Premixing Chamber (예혼합실을 갖는 연소-노즐 시스템의 음향장 해석)

  • Yoon, Myunggon;Kim, Jina;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.46-53
    • /
    • 2017
  • This paper deals with an acoustic model for a lean premixed gas turbine combustor composed of three stages: premixing chamber, nozzle and flame tube. Our model is given as an acoustic transfer function whose input is a heat release rate perturbation and output is a velocity perturbation at a flame location. We have shown that the resonance frequencies are functions of three round-trip frequencies of acoustic wave in each stage, and area ratios between stages. By analyzing poles of the acoustic transfer function, we could characterize resonant frequencies and their dependency on various system parameters of a combustor. It was found that our analytic findings match with existing numerical and experimental results in literature.

Combustion Instability Characteristics due to the Beating Phenomenon in the Dual Swirl Gas Turbine Model Combustor (이중선회 가스터빈 모델연소기에서 맥놀이 현상으로 인한 연소불안정 특성)

  • Jang, Munseok;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.61-69
    • /
    • 2016
  • This study is the results related to the combustion instability phenomenon with respect to combustor length and thermal power as variables in dual swirling combustor configuration. Especially, the beating phenomena having the insensitive resonance frequency of relatively constant peaks are observed when the combustor lengths increase in a lower power regime. This beating phenomenon might be occurred due to the interacting behaviors of pilot and main burners with different periods. Therefore, such insensitive response seems to be a result of the beating phenomenon with interaction between the pilot and main flames even though the combustor lengths are increased.

Evaporation and combustion of fuel droplets (액적의 증발과 연소현상)

  • 조경국
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.43-49
    • /
    • 1981
  • 연료 연소를 수반하는 장치는 공업계에서 널리 사용되고 있으나, 그 설계에 있어서 확립된 이 론은 거의 없고 대체로 과거의 설계에 따라 설계하고 있는 것이 현상이라 하겠다. 변조장치의 형 식이 정해져 있고, 성능도 거의 알려져 있는 경우에는 위와같은 방법도 좋겠지만 예를 들어 새로 운 형식 변조기나 연소실을 계획할 경우에는 실기와 동규모의 실험장치를 몇 종류 제작하여 그 성능을 실험적으로 비교 검토하여 좋은 것을 찾는 방밥을 취하게 된다. 이러한 방법은 많은 비용이 소요되며 기종이 바뀌면 새로위와 같은 일을 반복하여야 한다. 이와같은 불합리를 없애기 위하여 많은 연구자는 이론적으로 또 실험적으로 연구를 계속해왔다. 그리하여 현재 많은 사 실을 구명하였으나 아직 구체적 이론을 확립하기까지는 이르지못한 실정이다. 이것은 연소란 현상이 아주 복잡하고 또 관계된 인자가 많은 까닭이다. 본 강좌에서는 열체분우연소의 기본을 이루는 액적의 증발과 연소 문제에 대해서 현상적으로 해설하여 기초적 해석에 도움이 되기를 바라는 바이다.

  • PDF

Study on the Effect of Thermal Stratification on DME/n-Butane HCCI Combustion (열적성층화가 DME/n-Butane 예혼합압축자기착화연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1035-1042
    • /
    • 2010
  • The thermal stratification effect has been thought as one of the way to avoid dramatically generating the heat from HCCI combustion. We investigate the effect of thermal stratification on HCCI combustion fueled by DME and n-Butane. The thermal stratification occurs in a combustion chamber of a rapid compression machine with premixture by buoyancy effect that is made of fuel and air. The premixture is then adiabatically compressed, and during the process, the in-cylinder gas pressure is measured and two-dimensional chemiluminescence images are prepared and analyzed. Under the thermal stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous case. Further, the LTR period and the luminosity duration under homogeneous conditions are shorter than the corresponding quantities under stratified conditions. Additionally, under stratified conditions, the brightest luminosity intensity is delayed longer than that of homogeneous condition.