• Title/Summary/Keyword: 예혼합기연소

Search Result 186, Processing Time 0.027 seconds

Effect of the Combustor Geometries on Combustion and NOx Emission Characteristics in a Lean Premixed Micro Gas Turbine (희박예혼합 마이크로 가스터빈 연소기 형상에 따른 연소특성 및 NOx 배기특성에 관한연구)

  • Choi, Minsung;Won, Onnuri;Kim, Minkuk;Na, Jongmoon;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.229-231
    • /
    • 2012
  • A numerical analysis of a lean premixed combustor in a micro gas turbine was carried out to investigate the correlation between the turbulent mixing and emission characteristics on the combustor geometries. The interaction between the burners, by flow direction and momentum, significantly influenced on the turbulent mixing and combustion characteristics. The vortex which was generated by thermal expansion was observed during the combustion process, this was distinguished from the combustor geometries. The results showed that these characteristics can affect the NOx emission.

  • PDF

A Study on Numerical Modeling of Swirl-Premix Burners for Simulation of Gas Turbine Combustion (가스터빈 연소기의 연소장 해석을 위한 스월 예혼합 버너의 수치적 모델링에 관한 연구)

  • Baek, Gwangmin;Sohn, Chae Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.197-198
    • /
    • 2012
  • Efficient numerical analysis of combustion induced by premixed swirl multi-burners in a gas turbine combustor is conducted by adopting swirler model. By analyzing the internal recirculation zone, the inner and outer diameters of the swiler are determined to be 28 mm and 76mm to 28mm, respectively. Tangential velocity of 35m/s is determined from swirl and recirculation angles. With swirler model adopted, the predicted temperature of combustion gas agrees well with that from single-burner calculation without the model. But, NOx emission is underestimated by 60 %.

  • PDF

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

Combustion in Methane-Air Pre-Mixture with Water Vapor(2)-Comparison of Burning Velocity (물 혼합에 의한 메탄-공기 예혼합기의 연소(2)-연소속도 비교)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.137-142
    • /
    • 2009
  • Burning velocity of methane-air mixtures with water vapor have been measured to study the process of flame propagation using schlieren photographs and computation. The computations were carried out for the burning velocity using premix code of Chemkin program to compare the experimental results. The quantity of water vapor contained were changed 5% and 10% of total mixtures, and equivalence ratio of mixtures between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed little difference between these two methods, the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the effect of ambient temperature was less significant by increasing the water contents on the burning velocity.

  • PDF

Constant Volume Premixed Combustion Characteristics of Dimethyl Ether and LPG Fuel (DME와 LPG 연료의 정적 예혼합 연소특성)

  • 김태권;임문혁;장준영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.83-88
    • /
    • 2003
  • Measurements on the combustion characteristics of dimethyl ether(DME:$CH_3$O$CH_3$) as compared with LPC in constant volume combustion chamber have been conducted. The DME is a good alternative fuel having oxygen component in fuel. To elucidate the combustion characteristics of dimethyl ether as a fuel, the combustion pressures, combustion durations, and pollutants(NOx, $CO_2$, CO) are measured with equivalence ratios(Ø), and initial Pressures of fuel-air mixture. In the case of DME, the NOx concentration peaks in leu flame Ø = 0.85~0.9, and $CO_2$ concentration peaks at Ø=1.1, while the CO concentration abruptly rises at the condition of fuel-rich mixtures.

Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor (희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구)

  • Lee, Jong-Ho;Kim, Dae-Hyun;Jeon, Hung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.425-432
    • /
    • 2004
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence(OH$\^$*/) image and its Abel inverted image to investigate the flame structure at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure and NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ∼341.8㎐, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between OH$\^$*/ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.

Experimental Study on Heat Release in a Lean Premixed Dump Combustor using OH Chemiluminescence Images (희박 예혼합 덤프 연소기에서 OH 자발광을 이용한 열 방출에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1146-1151
    • /
    • 2004
  • Measurements of OH chemiluminescence in an atmospheric pressure, laboratory-scale dump combustor at equivalence ratios ranging from 0.63 to 0.89 were reported. The signal from the first electronically excited state of OH to ground state was detected through a band-pass filter with an ICCD. The objectives of this study are two: One is to see the effects of equivalence ratio on global heat release rate and local Rayleigh index distribution. To get the local Rayleigh index distribution, the line-of-sight images were inverted by tomographic method, such as Abel de-convolution. Another aim is to investigate the validity of using OH chemiluminescence acquired with an ICCD as a qualitative measure of local heat release. For constant inlet velocity and temperature, the overall intensities of OH emission acquired at different equivalence ratio showed periodic and higher value at high equivalence ratio. OH intensity averaged over one period of pressure increased exponentially with equivalence ratio. Local Rayleigh index distribution clearly showed the region of amplifying or damping the combustion instability as equivalence ratio increased. It could provide an information/insights on active control such as secondary fuel injection. Finally, local heat release rate derived from reconstructed OH images were presented for typical locations.

  • PDF

Determination of Laminar Burning Velocity in Premixed Oxy-Methane Flames (메탄-산소 층류화염전파속도 측정)

  • Oh, Jeong-Seog;Noh, Dong-Soon;Lee, Eun-Gyeong;Hong, Seong-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.258-262
    • /
    • 2011
  • The laminar burning velocity in premixed Oxy-CH4 flames was studied in a lab-scale Bunsen burner. $CH^*$ chemiluminescence method and Schliren photography were used. Experimental results were compared with numerical prediction which was calculated with a CHEMKIN 3.7 package with a PREMIX code. Global equivalence ratio of oxy-CH4 mixture was varied from 0.5 to 2.0 in a laminar flow region. The laminar burning velocity was measured as 3.1 m/s for Schlieren photograph and 2.9 m/s for $CH^*$ chemiluminescence technique (angle method).

  • PDF

Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor (희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.356-361
    • /
    • 2003
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence ($OH{\ast}$) image and its Abel inversion image at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure. Also NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ${\sim}341.8$ Hz, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between $OH{\ast}$ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.

  • PDF

Numerical Analysis of Combustion Characteristics during Mode Transfer Period in a Lean Premixed Gas Turbine for Power Generation (발전용 희박예혼합 가스터빈에서 연소모드변환 시기의 연소특성 해석)

  • Chung Jae Hwa;Seo Seok Bin;Kim Jong Jin;Cha Dong Jin;Ahn Dal Hong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.279-282
    • /
    • 2002
  • Recently, gas turbines for power generation adopt multistage DLN(Dry Low NOx) type combustion, where diffusion combustion is applied at low load and, with increase in load, the combustion mode is changed to lean premixed combustion to reduce NOx emissive concentration. However, during the mode changeover from diffusion to premixed flame, unfavorable phenomena, such as flashback, high amplitude combustion oscillations, or thermal damage of combustor parts could frequently occur. In the present study, to apply for the analysis of such unfavorable phenomena, three-dimensional CFD investigations are carried out to compare the detailed flow characteristics and temperature distribution inside the gas turbine combustor before and after combustion mode changeover. The fuel considered here is pure methane gas. A standard $k-{\varepsilon}$ turbulence model with wall function and a P-N type radiation heat transfer model, have been utilized. To analyze the complex geometric effects of combustor parts on combustion characteristics, fuel nozzles, a swirl vane f3r fuel-air mixing, and cooling air holes on the combustor liner wall, are included in this simulation.

  • PDF