As sharing of analyst reports became widely available, reports generated by analysts have become a useful tool to reduce difference in financial information between market participants. The quantitative information of analyst reports has been used in many ways to predict stock returns. However, there are relatively few domestic studies on the prediction power of text information in analyst reports to predict stock returns. We test stock return predictability of text in analyst reports by creating variables representing the TONE from the text. To overcome the limitation of the linear-model-assumption-based approach, we use the random-forest-based F-test.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.366-366
/
2022
유역의 하천유량과 같은 수문 시계열을 모의 또는 예측하기 위한 수문 모델링에서 최근 기계 학습 방법을 활용한 연구가 활발하게 적용되고 있는 추세이다. 이러한 데이터 기반 모델링 접근법은 입출력 자료에서 관찰된 패턴을 학습하며, 특히, 장단기기억(Long Short-Term Memory, LSTM) 네트워크는 많은 연구에서 수문 시계열 예측에 대한 적용성이 검증되었으나, 장기간의 고품질 관측자료를 활용할 때 더 나은 예측성능을 보인다. 그러나 우리나라의 경우 장기간 관측된 고품질의 하천유량 자료를 확보하기 어려운 실정이다. 따라서 본 연구에서는 LSTM 네트워크의 학습 시 가용한 모든 유역의 자료를 통합하여 학습시켰을 때 하천유량 예측성능을 개선할 수 있는지 판단해보고자 하였다. 이를 위해, 우리나라 13개 댐 유역을 대상으로 대상 유역의 자료만을 학습한 모델의 예측성능과 모든 유역의 자료를 학습한 모델의 예측성능을 비교해 보았다. 학습은 2001년부터 2010년까지 기상자료(강우, 최저·최고·평균기온, 상대습도, 이슬점, 풍속, 잠재증발산)를 이용하였으며, 2011년부터 2020년에 대해 테스트 되었다. 다지점 통합학습을 통해 테스트 기간에 대해 예측된 각 유역의 일 하천유량의 KGE 중앙값이 0.74로 단일지점 학습을 통해 예측된 KGE(0.72)보다 다소 개선된 결과를 보여주었다. 다지점 통합학습이 하천유량 예측에 큰 개선을 달성하지는 못하였으며, 추가적인 가용 자료 확보와 LSTM 구성의 개선을 통해 추가적인 연구가 필요할 것으로 판단된다.
본 연구의 목적은 VECM(Vector Error Correction Model)과 인공지능모형(Artificial Neural Networks)을 이용하여 우리나라 증권시장과 거시경제 변수들과의 장기적 관계에 대한 설명력을 비교해보고자 함에 있다. VECM이 APT(Arbitrage Pricing Theory)에 기초를 둔 선형동학모형이라고 한다면, 인공지능모형은 비모수적 비선형모형이라는 점에서, 두 방법론의 분석결과를 직접 비판하는 것은 의미있는 연구라고 할 수 있다. 인공지능모형을 주로 활용하는 선행연구들에 의하면, 증권시장은 시장의 특이패턴들로 인해 계량경제학적 접근인 선형 모형보다는 인공지능모형을 통해 증권시장의 움직임을 설명하고 예측하는 것이 더 바람직할 수도 있다는 것이다. 따라서, 본 연구에서는 VECM분석에서 자료의 안정성을 검증하고, 공적분 백터를 발견한 이후, 장기적 균형관계의 실증적 분석을 하였다. 그리고, 인공지능모형에서는 delta rule과 Sigmoid 함수를 이용한 GRNN(General Regression Neural Net)과 Back-Propagation등의 방법들을 활용하였다. 이러한 분석결과, Back-Propagation 모형이 다른 모든 모형들보다도 더 우수한 설명력을 보여주고 있었다. 이러한 결과들은 인공지능모형이 동태적인 선형 모형보다도 더 우수한 설명력을 제공할 수 있는 가능성을 보여주고 있었다.
With the recent development of the art distribution system, interest in art investment is increasing rather than seeing art as an object of aesthetic utility. Unlike stocks and bonds, the price of artworks has a heterogeneous characteristic that is determined by reflecting both objective and subjective factors, so the uncertainty in price prediction is high. In this study, we used LSTM Recurrent Neural Network deep learning model to predict the auction winning price by inputting the artist, physical and sales charateristics of the Korean artist. According to the result, the RMSE value, which explains the difference between the predicted and actual price by model, was 0.064. Painter Lee Dae Won had the highest predictive power, and Lee Joong Seop had the lowest. The results suggest the art market becomes more active as investment goods and demand for auction winning price increases.
Kim, Donghyun;Kim, Jungwook;Kwak, Jaewon;Necesito, Imee V.;Kim, Jongsung;Kim, Hung Soo
Journal of Wetlands Research
/
v.22
no.2
/
pp.106-112
/
2020
Wetlands play an important function and role in hydrological, environmental, and ecological, aspects of the watershed. Water level in wetlands is essential for various analysis such as for the determination of wetland function and its effects on the environment. Since several wetlands are ungauged, research on wetland water level prediction are uncommon. Therefore, this study developed a water level prediction model using multiple regression analysis, principal component regression analysis, artificial neural network, and DNN to predict wetland water level. Geumjeong-Mountain Wetland located in Yangsan-city, Gyeongsangnam-do province was selected as the target area, and the water level measurement data from April 2017 to July 2018 was used as the dependent variable. On the other hand, hydrological and meteorological data were used as independent variables in the study. As a result of evaluating the predictive power, the water level prediction model using DNN was selected as the final model as it showed an RMSE value of 6.359 and an NRMSE value of 18.91%. This research study is believed to be useful especially as a basic data for the development of wetland maintenance and management techniques using the water level of the existing unmeasured points.
Kriging methods as traditional spatial data analysis methods and geographical weighted regression models as statistical analysis methods are compared. In this paper, we apply data from the Ministry of Environment to spatial analysis for practical study. We compare these methods to performance with monthly carbon monoxide observations taken at 116 measuring area of air pollution in 1999.
Choi, Ji Hyeok;Lee, Min A;Lee, Goo Yong;Oh, Sang Jin
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.76-76
/
2022
과거 2015년 파리협정 채택을 기점으로 전 세계는 산업화 이전 대비 지구 평균온도 상승폭을 1.5℃ 이하로 억제하기 위한 노력을 지속적으로 강조하였다. 기후변화 완화를 위한 가장 적극적인 해결책으로 탄소중립 사회 전환이 제시되고 있으며, 이를 실행하기 위해서는 각 부문별 구체화된 탄소중립 추진 계획 수립이 요구된다. 특히 국내에서는 기후기술 분야에 특화된 기술수준 정보가 부족하여 국가 정책 수립에 어려움이 있다. 기술개발을 위한 정책 수립 시에는 기후기술의 정량적인 수준을 고려한 정책 방향을 결정해야 하지만, 국내에는 기술에 대한 분석에 대한 사례가 미흡한 실정이다. 본 연구에서는 수자원 분야의 국가경쟁력을 분석하고 미래기술전략을 도출하기 위해 논문·특허정보를 기반한 정량평가(활동력, 기술력, 포트폴리오)와 미래기술 예측을 수행하였다. 수자원 분야 기술은 2017년 과학기술정보통신부가 승인한 45대 기후기술 분류체계를 기본으로 하며, 적응 부문에서 '물관리 기술'과 '기후변화 예측 및 모니터링 기술'을 대상으로 하였다. 분석을 위해 수자원 분야 기술을 주요 5개국(한국, 중국, 일본, 미국, EU) 대상으로 수행하였으며, 데이터 기간은 2009년부터 2020년까지 총 12년간이다. 기술의 미래예측하기 위해 Bass 모형, Logistic 모형, Gompertz 모형 등을 활용하였으며, 향후 기술을 전망하고자 한다. 본 분석에서 수행하는 수자원 분야 기술예측은 탄소중립 실현을 위한 미래사회에 대비하고, 기술개발에 대한 불확실성을 감소시킬 수 있을 것으로 기대된다.
With the development of renewable energy sector, the importance of solar energy is continuously increasing. Solar radiation forecasting is essential to accurately solar power generation forecasting. In this paper, we used time series models (ARIMA, ARIMAX, seasonal ARIMA, seasonal ARIMAX, ARIMA GARCH, ARIMAX-GARCH, seasonal ARIMA-GARCH, seasonal ARIMAX-GARCH). We compared the performance of the models using mean absolute error and root mean square error. According to the performance of the models without exogenous variables, the Seasonal ARIMA-GARCH model showed better performance model considering the problem of heteroscedasticity. However, when the exogenous variables were considered, the ARIMAX model showed the best forecasting accuracy.
Ahn, Sang Jin;Jun, Kye Won;Ryu, Byong Ro;Han, Yang Su
Proceedings of the Korea Water Resources Association Conference
/
2004.05b
/
pp.1408-1412
/
2004
인구의 폭발적 증가, 산업화, 도시화의 급진적, 과학기숙의 발달 등으로 물 소비는 급증하는 반면, 이상기후현상으로 수자원의 절대량이 줄어 수자원의 양적인 문제와 하천 및 저수지의 수질오염에 대한 질적인 문제가 ,대두되고 있다. 하천의 수질현상 및 이송은 상당히 비선형적이고, 시간에 따라 변화하려, 실제로 수질의 예측은 유량의 변동, 오염물질의 이송 및 확산, 하천 구조물 등의 여러 요인에 의하여 상당히 어렵다고 알려져 왔다. 또한 한정된 수자원으로 하천의 수량과 수질목표를 동시에 달성하기 위해서는 물의 수요와 공급을 실시간으로 감시하면서 기상과 유출예측기술을 활용하여 용수의 수요와 공급을 예측하고 이를 토대로 수량과 수질을 고려한 물관리 운영시스템이 구축되어야 한다. 이를 위해 본 연구에서는 모형의 입${\cdot}$출력 구성을 자유롭게 변형할 수 있는 상태공간 모형과 신경망 모형을 이용하여 금강수계 주요 지점의 수질예측 모형을 구성하고 모형의 적용성을 파악한 후 예측력이 우수한 모형을 Web기반 모형의 수질예측 모듈의 기본모형으로 선정하고 Web 상에서 수질예측이 가능하도록 시스템을 개발하였다.
The Journal of Korean Association of Computer Education
/
v.7
no.5
/
pp.57-70
/
2004
This study is the subsequent study that has the objectives examining the relationships among 'substantive understanding', 'scientific literacy' and 'learning intention' in computer supported intentional learning environments and inquiry ability, variables for affecting knowledge construction derived from the finding out of the former study. As a result, the current study confirmed in CSILE the close correlation between 'the learning intention for scientific inquiry' and 'substantive understanding', between 'the learning intention for scientific inquiry' and 'scientific literacy'. Another result showed that 'scientific literacy' was the most significant predictor on inquiry ability. Base on the result of this study, the present researcher is about to make suggestions to stimulate learners' scientific literacy in CSILE-based inquiry learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.