• Title/Summary/Keyword: 예측-교정자법

Search Result 2, Processing Time 0.015 seconds

Numerical Simulation of Unsteady CH$_4$/Air Jet Diffusion Flame (비정상 CH$_4$/공기 제트 확산화염에 관한 수치모사)

  • Lee, Chang-Eon;O, Chang-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1087-1096
    • /
    • 2001
  • The dynamic structures of unsteady CH$_4$/Air jet diffusion flame with a flame-vortex interaction were numerically investigated. A timed-dependent, axisymmetric computational model and a low mach number approximation were employed in the present calculation. A two-step global reaction mechanism which considers 6 species, was used to calculate the reaction rates. The predicted results including the gravitational effect show that the large outer vortices and the small inner vortices can be well simulated without any additional disturbances near nozzle tip. It was found that the temperature and species concentrations have deviated values even for the same mixture fraction in the flame-vortex interaction region. It was also shown that the flame surface is not deformed by the inner vortex in upstream region, while in downstream region, the flame surface is compressed or stretched by the outer vortex roll-up. The present unsteady jet flame configuration accompanying a flame-vortex interaction is expected to give good implications for the unsteady structures of turbulent flames.

Numerical Simulation of the Evolution and Structure of a Single Vortex in Reacting and Non-reacting Jet Flow Fields (반응 및 비반응 제트 유동장에서 단일 와동의 전개 및 구조에 대한 수치모사)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Chang-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.28-37
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the evolution and vortical structure of a single vortex in reacting and non-reacting jet flow fields. A predictor-corrector-type numerical scheme with a low Mach number approximation was used, and a two-step global reaction mechanism was adopted as the combustion model. Through the comparisons of single vortex behaviors in reacting and non-reacting jet flow fields, it was found that the evolution characteristics and vortical structure of the single vortex were significantly influenced by a outer vortex that was generated from the buoyance effect as well as the chemical heat release. Furthermore, it was also identified that the differences of the vortical structure in reacting and non-reacting jet flow fields were mainly attributed to the thermal expansion, Baroclinic torque and buoyance effect.