• Title/Summary/Keyword: 예측 중심의 모형

Search Result 573, Processing Time 0.02 seconds

A Study on Consumer's Emotional Consumption Value and Purchase Intention about IoT Products - Focused on the preference of using EEG - (IoT 제품에 관한 소비자의 감성적 소비가치와 구매의도에 관한 연구 - EEG를 활용한 선호도 연구를 중심으로 -)

  • Lee, Young-ae;Kim, Seung-in
    • Journal of Communication Design
    • /
    • v.68
    • /
    • pp.278-288
    • /
    • 2019
  • The purpose of this study is to analyze the effects of risk and convenience on purchase intention in the IOT market, and I want to analyze the moderating effect of emotional consumption value. In this study, two products were selected from three product groups. There are three major methods of research. First, theoretical considerations. Second, survey analysis. Reliability analysis and factor analysis were performed using descriptive statistics using SPSS. Third, we measured changes of EEG according to in - depth interview and indirect experience. As a result of the hypothesis of this study, it was confirmed that convenience of use of IoT product influences purchase intention. Risk was predicted to have a negative effect on purchase intentions, but not significant in this study. This implies that IoT products tend to be neglected in terms of monetary loss such as cost of purchase, cost of use, and disposal cost when purchasing. In-depth interviews and EEG analysis revealed that there is a desire to purchase and try out the IoT product due to the nature of the product, the novelty of new technology, and the vague idea that it will benefit my life. The aesthetic, symbolic, and pleasure factors, which are sub - elements of emotional consumption value, were found to have a great influence. This is consistent with previous research showing that emotional consumption value has a positive effect on purchase intention. In-depth interviews and EEG analyzes also yielded the same results. This study has revealed that emotional consumption value affects the intention to purchase IoT products. It seems that companies producing IoT products need to concentrate on marketing with more emotional consumption value.

A Study of Depression in Female Seniors Living Alone: A Comparison Between the Young-old and the Old-old Adults (여성 독거노인의 우울에 관한 연구: 전기와 후기노인의 비교를 중심으로)

  • Jin-Seop Lim;Je-sun Kim
    • Journal of Industrial Convergence
    • /
    • v.22 no.1
    • /
    • pp.149-162
    • /
    • 2024
  • This study is a longitudinal study of female older adults living alone, one of the most vulnerable groups in our society, to determine how their depression changes over time and what factors affect their depression. At the same time, considering that there is a large difference in age among the same older adults, this study divided the female older adults into the young-old and the old-old to see how the predictors of depression in each group differ from each other. The main findings are as follows First, depression among female older adults living alone appears to have a declining pattern over time. In the conditional model, factors affecting the initial level of the depression trajectory among women living alone were found to be associated with lower initial depression values among those living in metropolitan areas rather than non-metropolitan areas, better subjective health, and those who did not exercise. Next, we examined the factors affecting rate of change (slope) in depression among female living alone older adults and found that the higher the age, the larger the metropolitan area, the better the subjective health, the less socializing, and the more socializing, the greater the decrease in depression level. Finally, there were some differences in the pathways affecting the initial value and slope of depression among female older adults living alone between the early and late older adults. Specifically, the higher the initial level of participation in social activities, the greater the change in depression among the late older adults, while there was no significant relationship among the early older adults. In the early older adults, better initial subjective health was associated with a larger change in depression than in the late older adults. Only in the late older adults did those who regularly exercised in the early years have higher initial depression values than those who did not. Based on the results of the above analyses, suggestions were made to reduce depression among female older adults living alone.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.