• Title/Summary/Keyword: 예측 중심의 모형

Search Result 573, Processing Time 0.027 seconds

Bayesian VAR Analysis of Dynamic Relationships among Shipping Industry, Foreign Exchange Rate and Industrial Production (Bayesian VAR를 이용한 해운경기, 환율 그리고 산업생산 간의 동태적 상관분석)

  • Kim, Hyunsok;Chang, Myunghee
    • Journal of Korea Port Economic Association
    • /
    • v.30 no.2
    • /
    • pp.77-92
    • /
    • 2014
  • The focus of this study is to analyse dynamic relationship among BDI(Baltic Dry-bulk Index, hereafter BDI), forex market and industrial production using monthly data from 2003-2013. Specifically, we have focused on the investigations how monetary and real variable affect shipping industry during recession period. To compare performance between general VAR and Bayesian VAR we first examine DAG(Directed Acyclic Graph) to clarify causality among the variables and then employ MSFE(mean squared forecast error). The overall estimated results from impulse-response analysis imply that BDI has been strongly affected by other shock, such as forex market and industrial production in Bayesian VAR. In particular, Bayesian VAR show better performance than general VAR in forecasting.

Forecasting Passenger Transport Demand Using Seasonal ARIMA Model - Focused on Joongang Line (계절 ARIMA 모형을 이용한 여객수송수요 예측: 중앙선을 중심으로)

  • Kim, Beom-Seung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.307-312
    • /
    • 2014
  • This study suggested the ARIMA model taking into consideration the seasonal characteristic factor as a method for efficiently forecasting passenger transport demand of the Joongang Line. The forecasting model was built including the demand for the central inland region tourist train (O-train, V-train), which was opened to traffic in April-, 2013 and run in order to reflect the recent demand for the tourism industry. By using the monthly time series data (103) from January-, 2005 to July-, 2013, the optimum model was selected. The forecasting results of passenger transport demand of the Joongang Line showed continuous increase. The developed model forecasts the short-term demand of the Joongang Line.

Prediction of electricity consumption in A hotel using ensemble learning with temperature (앙상블 학습과 온도 변수를 이용한 A 호텔의 전력소모량 예측)

  • Kim, Jaehwi;Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.319-330
    • /
    • 2019
  • Forecasting the electricity consumption through analyzing the past electricity consumption a advantageous for energy planing and policy. Machine learning is widely used as a method to predict electricity consumption. Among them, ensemble learning is a method to avoid the overfitting of models and reduce variance to improve prediction accuracy. However, ensemble learning applied to daily data shows the disadvantages of predicting a center value without showing a peak due to the characteristics of ensemble learning. In this study, we overcome the shortcomings of ensemble learning by considering the temperature trend. We compare nine models and propose a model using random forest with the linear trend of temperature.

A study on the construction of learning data when predicting river water level using deep learning (딥러닝기법 이용한 하천수위 예측시 학습자료 구축에 대한 연구)

  • Yuk, Gi-moon;Kim, Jang-Gyeong;Park, Chan-ho;Kim, Tae-Jeong;Moon, Yong-il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.357-357
    • /
    • 2022
  • 도심지 하천의 수위예측을 위해서는 일반적으로 수리-수문모형을 기반으로한 홍수위 모형을 사용하고 있다. 하지만 이러한 모형들은 매개변수 추정방법 및 모형구축을 행한 사용자의 숙련도에 따라 불확실성이 매우 크다 이러한 문제점을 개선하기 위해 데이터 기반의 딥러닝기법을 이용한 하천수위 예측이 많이 연구되고 있으나 수문기상자료와 같이 이전 시간 값과의 상관성이 큰 자료를 활용하면서 발생하는 자기 예측(self Prediction) 현상이 발생한다. 또한 도심지 하천의 데이터 품질관리의 문제로 입력자료 구축에 어려움이 있다. 본 연구는 중랑천 유역을 중심으로 2015년 ~ 2020년 사이의 강우 및 수위자료를 이용하여 학습을 진행하였으며 하천의 수위 예측을 수행함에 있어 학습입력자료 구축시 강우사상의 구분 방법에 따른 예측결과 비교 및 지연시간 및 Embedding Dimension을 이용한 전처리를 통해 자기 예측 현상을 비교해 보았다. 본 연구를 통해 도심지 하천 수위예측의 학습입력자료 구성을 위한 방안을 제시하였다.

  • PDF

Analysis of Climate Change using Stochastical Methods (based on precipitation data) (통계적 기법을 이용한 기후 변화 분석 (강우량 중심))

  • Jeong, Chang-Sam;Sim, Jae-Hyeon;Kim, Mun-Mo;Heo, Jun-Haeng;Yeo, Un-Gwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1001-1006
    • /
    • 2008
  • 최근 기후변화에 따른 강우량의 변화에 많은 관심과 연구가 집중되어지고 있다. 현 과학 기술에서 이러한 미래의 기후를 예측하기 위해서는 크게 두 가지의 방법을 이용할 수 있다. 그 첫 번째가 컴퓨터 모델을 이용하는 방법이고 두 번째가 과거 자료를 이용한 통계적 기법을 통해 매래의 상황을 예측하는 방법이다. 이들 가운데 현재 기상 분야에서 가장 널리 활용되는 기법은 컴퓨터 모델을 이용하는 방법으로 기상의 물리적 특성을 이용한 수치모형인 GCM(Global Climate Model 혹은 General Circulation Model)을 이용하는 것이다. 하지만, 이러한 수치모형을 이용한 기법을 이용하기 위해서는 많은 비용과 노력이 소요되며, 모의를 위해 설정되는 입력자료와 초기 조건들, 각종 가정 사항들, 모형의 구조, 등에 따라 상이한 결과를 나타내어 아직까지 직접적인 활용에는 많은 어려움이 따른다. 이와 달리 통계적 기법의 경우 비교적 용이하게 분석이 가능하며, 과거와 달리 최근에는 비교적 신뢰도가 높은 다양한 수문 및 기상 자료가 축적되어 있어 미래의 기후변화를 예측하는데 유용한 수단이 될 수 있을 것으로 판단된다. 따라서 본 연구에서는 통계적인 기법을 이용하여 강우량 자료를 중심으로 기후변화에 따른 변화 추이를 분석하였다. 적용된 기법은 먼저 국내 기상청 관측 지점들을 중심으로 강우의 경향성과 변동성을 분석하여 기후변화에 따라 국내 지점들의 강우량 변화 추이를 분석하여보았다. 또한 2000년을 기점으로 과거 자료와 최근의 자료를 이용한 2개의 자료군들에 대해 각각 빈도 분석을 실시하여 동일 지점들에 대한 설계강우량의 변화 추이도 분석하였다.

  • PDF

Application of SARIMA Model in Air Cargo Demand Forecasting: Focussing on Incheon-North America Routes (항공화물수요예측에서 계절 ARIMA모형 적용에 관한 연구: 인천국제공항발 미주항공노선을 중심으로)

  • SUH, Bo Hyoun;YANG, Tae Woong;HA, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • For forecasting air cargo demand from Incheon National Airport to all of airports in the United States (US), this study employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) method and the time-series data collected from the first quarter of 2003 to the second quarter of 2016. By comparing the SARIMA method against the ARIMA method, it was found that the SARIMA method performs well, relatively with time series data highlighting seasonal periodic characteristics. While existing previous research was generally focused on the air passenger and the air cargo as a whole rather than specific air routes, this study emphasized on a specific air cargo demand to the US route. The meaningful findings would support the future research.

An Study of Demand Forecasting Methodology Based on Hype Cycle: The Case Study on Hybrid Cars (기대주기 분석을 활용한 수요예측 연구: 하이브리드 자동차의 사례를 중심으로)

  • Jun, Seung-Pyo
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.spc
    • /
    • pp.1232-1255
    • /
    • 2011
  • This paper proposes a model for demand forecasting that will require less effort in the process of utilizing the new product diffusion model while also allowing for more objective and timely application. Drawing upon the theoretical foundation provided by the hype cycle model and the consumer adoption model, this proposed model makes it possible to estimate the maximum market potential based solely on bibliometrics and the scale of the early market, thereby presenting a method for supplying the major parameters required for the Bass model. Upon analyzing the forecasting ability of this model by applying it to the case of the hybrid car market, the model was confirmed to be capable of successfully forecasting results similar in scale to the market potential deduced through various other objective sources of information, thus underscoring the potentials of utilizing this model. Moreover, even the hype cycle or the life cycle can be estimated through direct linkage with bibliometrics and the Bass model. In cases where the hype cycles of other models have been observed, the forecasting ability of this model was demonstrated through simple case studies. Since this proposed model yields a maximum market potential that can also be applied directly to other growth curve models, the model presented in the following paper provides new directions in the endeavor to forecast technology diffusion and identify promising technologies through bibliometrics.

  • PDF

Development of Tracking Technique Using Mass Moment of Area for Radar Rainfall (모멘트 개념을 적용한 레이더 강수량 Tracking 기법 개발)

  • Kwon, Hyun-Han;Lee, Jeong-Ju;Kim, Kyung-Tak;Kim, Byung-Sik;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.396-396
    • /
    • 2011
  • 본 연구에서는 레이더 강수량 자료를 대상으로 예측모형을 구축하기에 앞서서 강수장이 가지는 특징을 활용한 Tracking 기법을 개발하고자 한다. Tracking 기법이라 함은 시간에 따라 움직이는 강수장을 추적하는 개념이다. 최근에 태풍, Hurricane 등의 경로를 추정하기 위한 방법으로 국외를 중심으로 연구가 시작되고 있다. 본 연구에서 제안하는 방법론은 모멘트 개념을 중심으로 강수장으로부터 1차모멘트와 2차모멘트를 추정함으로써 강수장의 중심, 강수장의 이동 방향, 강수장의 폭 등 다양한 정보를 유도할 수 있다. 일단 이러한 정보들이 유도되면 이를 통해 강수장의 특성을 범주화 시킬 수 있으며 이를 예측 모델과 연결시킬 수 있을 것으로 판단된다. 격자형태의 레이더강수량으로부터 1, 2차모멘트를 추정하기 위한 식은 다음과 같다. 모멘트 추정을 통해 총 5 개의 속성을 추출할 수 있다. 즉, 위경도상의 도심과 방향의 공분산, y방향의 공분산, xy의 공분산 등을 이용하여 다음 그림과 같이 강수의 중심과 강수장의 형태를 수치적으로 추정할 수 있다. 강수장의 형태는 공분산으로부터 추정하여 타원체로 나타내었다. 이러한 과정을 통해 강수장의 중심과 모양의 Tracking이 가능하며 이를 활용한 예측모형의 개발이 가능할 것으로 판단된다.

  • PDF

The Bankruptcy Prediction Analysis : Focused on Post IMF KSE-listed Companies (기업도산 예측력 분석방법에 대한 연구 : IMF후 국내 상장회사를 중심으로)

  • Jeong Yu-Seok;Lee Hyun-Soo;Chae Young-Il;Hong Bong-Hwa
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.75-89
    • /
    • 2006
  • This paper is concerned with analysing the bankruptcy prediction power of three models: Multivariate Discriminant Analysis(MDA), Logit Analysis, Neural Network. The research targeted the bankrupted companies after the foreign exchange crisis in 1997 to differentiate from previous research efforts, and all participating companies were randomly selected from the KSE listed companies belonging to manufacturing industry to improve prediction accuracy and validity of the model. In order to assure meaningful bankruptcy prediction, training data and testing data were not extracted within the corresponding period. The result is that prediction accuracy of neural networks is more excellent than that of logit analysis and MDA model when considering that execution of testing data was followed by execution of training data.

  • PDF