• Title/Summary/Keyword: 예측 중심의 모형

Search Result 573, Processing Time 0.044 seconds

Market Forecasting Modeling Using the Diffusion Model for the Strategic Items in Information/Telecommunication Area (확산 모형을 이용한 전략품목 시장 예측 모형)

  • Kim, K.H.;Kim, J.S.;Kang, H.I.;Jun, C.H.
    • Electronics and Telecommunications Trends
    • /
    • v.15 no.6 s.66
    • /
    • pp.178-189
    • /
    • 2000
  • 본 연구에서는 비교적 적은 양의 시장자료를 이용하여 장기적 안정성을 갖춘 예측치를 도출할 수 있는 것으로 알려진 확산 모형을 중심으로 기존의 신상품 시장예측 방법론에 대하여 고찰하고, 과거 시장자료가 거의 존재하지 않는 정보통신 관련 품목에 대한 국내시장 예측 모형 개발 방법론을 제안하였다. 본 연구에서 제시된 방법론에 의거하여 개발될 예측 모형은 기존의 정보통신분야 전략품목 이외의 여타 관련 품목, 나아가 향후 등장하게 될 새로운 품목에 대한 예측 작업에도 적용이 가능하며, 해외 기관이 제공하는 국내시장 자료에 대한 검증 툴로서의 역할 역시 제공할 것으로 기대된다.

Prediction of Probabilistic Meteorological Drought Using Bayesian Network (베이지안 네트워크를 활용한 기상학적 가뭄의 확률론적 예측)

  • Shin, Ji Yae;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.20-20
    • /
    • 2015
  • 최근 기후변화의 영향으로 전 세계적으로 홍수와 가뭄의 발생빈도가 증가하고 있다. 특히, 가뭄은 우리나라에서 겨울과 봄철을 중심으로 매년 발생되고 있다. 가뭄의 정확한 발생을 판단하기는 어려우나, 가뭄이 발생되면 그 진행속도는 홍수보다 느리기 때문에 초기에 가뭄의 발생가능성을 예측한다면 가뭄에 대한 피해를 줄일 수 있다. 따라서 최근 가뭄 예측에 대한 다양한 연구가 이루어지고 있다. 본 연구에서는 가뭄발생의 불확실성을 내포하기 위하여 Bayesian Network (BN) 모형과 SPI의 자기상관성을 바탕으로 가까운 미래의 가뭄 발생확률을 예측하는 방법을 제안하였다. BN은 변수들 간의 인과관계를 확률적으로 나타낼 수 있는 네트워크 모형으로, 자연현상에 대한 위험도 분석 및 의학 분야에서 질병추정을 위한 모형으로 활용되고 있다. 본 연구에서는 가까운 미래의 가뭄 예측을 위하여 APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 강우예측 결과로 도출한 미래 SPI 및 과거 강우량 자료로 구축한 SPI를 부모노드로, 예측 SPI를 자식노드로 BN을 구축하였다. BN의 각각의 노드를 Gaussian 확률분포모형으로 가정한 뒤, Likelihood weighting 방법으로 주변사후분포확률(Marginal posterior distribution)을 추정하여 미래의 SPI의 발생확률을 계산하였다. 2008년부터 2013년의 BN 가뭄 예측값과 MME 강우예측 결과로 도출한 SPI를 실제 관측 강우량으로 산정한 SPI와 비교하였으며, BN이 실제 관측결과에 가까운 결과가 도출되었다. 본 연구에서는 BN을 활용하여 가까운 미래의 가뭄 발생가능성을 확률적으로 나타낼 수 있는 방법을 제시하였으며, 그 결과 가뭄상태별 가뭄 발생확률이 산정되었다.

  • PDF

A Comparison of Autoregressive Integrated Moving Average and Artificial Neural Network for Time Series Prediction (자기회귀누적이동평균모형과 신경망모형을 이용한 시계열예측의 비교)

  • Yoon, YeoChang
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.1516-1519
    • /
    • 2011
  • 예측에 필요한 중요한 자료에는 비선형 자료와 시계열과 같은 선형 자료 등이 있다. 이들 자료는 그 함축적인 관계가 매우 복잡하여 전통적인 통계분석 도구로 식별하는데 어려움이 많다. 신경망 분석은 비모수적 문제나 비선형 곡선 적합능력의 우수성 때문에 현실세계에서의 고유한 복잡성을 다루는 많은 경제 응용 분야에서 널리 이용되고 있다. 신경망은 또한 경제 시계열자료의 예측분야에서도 여러 연구에서 훌륭한 도구로서 적용되고 있다. 전통적으로 우리나라에서 시계열자료의 예측은 선형 자료적 분석을 중심으로 하는 분석도구인 자기회귀누적이동평균(ARIMA)모형을 이용한 시계열분석이 일반적이다. 이 연구에서는 신경망과 ARIMA 모형을 이용하여 한국의 주가변동 자료 및 자동차등록 현황 자료등과 같은 시계열자료를 이용한 예측결과를 비교한다. 연구의 결과는 신경망을 이용한 예측 방법들이 ARIMA 예측 결과보다 통계적으로 작은 오차를 주는 보다 효율적인 방법임을 보여주고 있다.

Improvement of Trip Generation Model in Seoul Metropolitan Area (수도권지역의 통행발생모형의 검증 (회귀모형과 카테고리모형을 중심으로))

  • Kim, Jin-Ja;Rhee, Jong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.49-58
    • /
    • 2004
  • The first and perhaps the most critical and perhaps the most important step in the process of predicting future traffic volume in a region (Zone) is to estimate the number of trips generated in from each traffic analysis zone. Most trip generation models for urban transportation planning, and highway in Korea are regression models. In Korea the category analysis has not been tried for last decades since the proper data such as the household travel behavior data have not been collected. Recently, the comprehensive household travel behavior survey such as ${\ulcorner}$1996 The Household Travel Behavior Survey${\lrcorner}$, ${\ulcorner}$2002 The Household Travel Behavior Survey${\lrcorner}$ has been done. In this paper, the cross-classification tables of Seoul Metropolitan Area including the City of Seoul and Kyonggi Province are estimated by the category analysis. The tables are compared with regression models and ${\ulcorner}$2002 The Household Travel Behavior Survey${\lrcorner}$ data in terms of predictive capabilities in Seoul Metropolitan Area. Improvement strategies for trip generation forecast in Seoul Metropolitan Area are proposed.

Estimating soil moisture using machine learning approach: A Case Study to Yongdam watershed (기계학습 기반의 토양함수 예측 기법 개발 (용담댐 시험유역을 중심으로))

  • Huy, Nguyen Dinh;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.167-167
    • /
    • 2018
  • 토양수분은 토양에 포함된 평균 수분량을 나타내며 수문 순환 관점에서 매우 중요한 수문변량 중 하나이다. 본 연구에서는 대표적인 기계학습 방법인 Support Vector Machine (SVM)을 이용한 토양 함수 예측 기법을 개발하고자 하며, 예측인자로서 원격 탐측 기반의 토양함수자료, 강수량, 온도 등을 활용하고자 한다. SVM은 Kernel 함수를 이용하여 복잡한 비선형 관계를 선형 가정을 통해서 해석하는 기계학습 방법으로서 전역모델(global model)로서 다양한 수문기상분야에 적용이 이루어지고 있다. SVM의 장점은 일정 부분의 오차를 허용함으로서 모형의 일반화 측면에서 기존 인공신경망(artificial neural network, ANN)에 비해 우수한 성능을 나타내며, 특히 예측모형으로서 적용성이 매우 크다. 본 연구에서는 과거 토양 함수 자료와 강수, 온도, 위성 관측 기반 정보 등을 이용하여 모형을 적합시키고 이를 미계측 유역으로 확장하는데 연구의 목적이 있으며, 본 연구를 통해 제안된 모형은 용담댐 시험유역을 대상으로 적용되며 기존 ANN 모형 및 다중회귀분석 결과와 비교를 통해 모형의 적합성을 평가하고자한다.

  • PDF

Study on Water Stage Prediction using Neuro-Fuzzy with Genetic Algorithm (Neuro-Fuzzy와 유전자알고리즘을 이용한 수위 예측에 관한 연구)

  • Yeo, Woon-Ki;Seo, Young-Min;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.382-382
    • /
    • 2011
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이며, 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이는 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 수위를 직접 예측함으로써 이러한 오차의 문제점을 극복 하고자 한다. Neuro-Fuzzy 모형은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 소속함수를 최적화함으로서 모형의 구조를 스스로 조직화한다. 따라서 수학적 알고리즘의 적용이 어려운 강우와 유출관계를 하천유역이라는 시스템에서 발생된 신호체계의 입 출력패턴으로 간주하고 인간의 사고과정을 근거로 추론과정을 거쳐 수문계의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 이러한 유전자 알고리즘은 전역 샘플링을 중심으로 한 수법으로 해 공간상에서 유전자의 개수만큼 복수의 탐색점을 설정할 뿐만 아니라 교배와 돌연변이 등으로 좁아지는 탐색점 바깥의 영역으로 탐색을 확장할 수 있기 때문에 지역해에 빠질 위험성이 크게 줄어든다. 따라서 예측과 패턴인식에 강한 뉴로퍼지 모형의 해 탐색방법을 유전자 알고리즘을 사용한다면 보다 정확한 해를 찾는 것이 가능할 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 상류의 수위자료로부터 하류의 단시간 수위예측에 관해 연구하였으며, 이를 위해 유전자 알고리즘을 이용항여 소속함수를 최적화 시키는 형태의 Neuro-Fuzzy모형에 대하여 연구하였다.

  • PDF

연안여객수요 예측에 관한 연구 (인천-제주항로를 중심으로)

  • Gwon, Gyu-Ri;Kim, Yul-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.1-3
    • /
    • 2016
  • 연안여객운송은 도서와 육지의 인적 및 물적 교류가 이루어질 수 있도록 하는 유일한 교통수단으로서 그 중요성이 매우 크다. 그럼에도 불구하고 연안여객선에서의 수익성이 낮다는 이유로 그 중요성을 인식하지 못하고 있는 것이 사실이다. 그렇지만 앞으로의 연안여객 수요에 따라 향후 도서민들에게 안정적인 서비스를 제공하기 위해 선박의 추가 투입 및 시설 확충을 위한 의사결정에서 가장 기본이 되는 것이 연안여객의 수요를 예측하는 것이다. 본 논문 에서는 가장 많은 여객 수요를 가지고 있는 제주지역 중에서도 세월호 이후에 끊긴 인천과 제주 항로에 초점을 맞추어 연구를 진행할 것이다. 2007년 1월부터 2013년 12월 까지 84개의 월별 자료를 바탕으로 예측 기법 중에서도 계량적 기법인 시계열 분석을 통해 여객 수요를 예측하고자 한다. 예측 작업에 있어 항상 우수한 성과를 보이는 단 하나의 모형은 존재하지 않기 때문에 예측에 수반된 불확실성을 줄이기 위해 다양한 예측모형을 사용한다. 여러 방법론 중에서 가장 적합도가 높은 모형을 찾아 여객 수요를 예측하고 결과를 도출하였다.

  • PDF

Forecasting the Diffusion of Technology using Patent Information: Focused on Information Security Technology for Network-Centric Warfare (특허정보를 활용한 기술 확산 예측: NCW 정보보호기술을 중심으로)

  • Kim, Do-Hoe;Park, Sang-Sung;Shin, Young-Geun;Jang, Dong-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.125-132
    • /
    • 2009
  • The paradigm of economy has been transformed into knowledge based economic paradigm in 21th century. Analysis of patent trend is one of the strategic methods for increasing their patent competitive power. However, this method is just presenting statistical data about patent trend or qualitative analysis about some core technology. In this paper, we forecast technology diffusion using patent information for more progressive analysis. We make an experiment with bass model and logistic model and make use of patent data about information-security technology for NCW as input data. We conclude that the logistic model is more efficient for forecasting and this technology is approaching to the age of technology maturity.

Forecasts of electricity consumption in an industry building (광, 공업용 건물의 전기 사용량에 대한 시계열 분석)

  • Kim, Minah;Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.189-204
    • /
    • 2018
  • This study is on forecasting the electricity consumption of an industrial manufacturing building called GGM from January 2014 to April 2017. We fitted models using SARIMA, SARIMA + GARCH, Holt-Winters method and ARIMA with Fourier transformation. We also forecasted electricity consumption for one month ahead and compared the predicted root mean square error as well as the predicted error rate of each model. The electricity consumption of GGM fluctuates weekly and annually; therefore, SARIMA + GARCH model considering both volatility and seasonality, shows the best fit and prediction.