A traffic accident analysis method was developed and tested based on the highway alignment risk indices using geographic information systems(GIS). Impacts of the highway alignment on traffic accidents have been identified by examining accidents occurred on different alignment conditions and by investigating traffic accident risk indices(TARI). Evaluative criteria are suggested using geometric design elements as an independent variable. Traffic accident rates were forecasted more realistically and objectively by considering the interaction between highway alignment factors and the design consistency. And traffic accident risk indices and risk ratings were suggested based on model estimation results and accident data. Finally, forecasting traffic accident rates, evaluating the level of risk and then visualizing information graphically were combined into one system called risk assessment system by means of GIS. This risk assessment system is expected to play a major role in designing four-lane highways and developing remedies for highway sections susceptible to traffic accidents.
Bang, Junah;Son, Kwangmin;Lee, So Jung Ashley;Lee, Hyeongeun;Jo, Subin
The Journal of Bigdata
/
v.3
no.2
/
pp.35-49
/
2018
It seems unrealistic to say that fried chicken, often known as the American soul food, has one of the biggest markets in South Korea. Yet, South Korea owns more numbers of fried chicken restaurants than those of McDonald's franchise globally[4]. Needless to say not all these fast-food commerce survive in such small country. In this study, we propose a predictive model that could potentially help one's decision whilst deciding to open a store. We've extracted all fried chicken restaurants registered at the Korean Ministry of the Interior and Safety, then collected a number of features that seem relevant to a store's closure. After comparing the results of different algorithms, we conclude that in order to best predict a store's survival is FDA(Flexible Discriminant Analysis). While Neural Network showed the highest prediction rate, FDA showed better balanced performance considering sensitivity and specificity.
The road should be designed in the consistent alignment which the driver can drive safely. Also, proper highway environments in order to maintain optimal operational speeds on highway sections should be provided In design stage, for highway environments, it is essential for an operational speed estimation model to different highway environments. If a method which could evaluate the status of the road safety is developed through this operational speed estimation model, it is possible to provide safe and more comfortable highways to road users. In the study factors to effect on operational speeds are classified into three groups horizontal & vertical alignments and traffic operation characteristic factors. Factors are chosen to effect on operational speeds by using collation analysis as classifications of tangent sections, horizontal curve sections and vertical curve sections. In order to develop operational speed estimation models in express highways, multi-regression analysis has been used in this study using the selected factors. This study has meaning that the developed estimation models for operational speeds and evaluation of degree of safety to horizontal and vortical alignments simultaneous. In order to represent whole area of the country with the developed models, the models should be re-analyzed with vast data related with road alignment factors in the near future.
An accurate prediction of emotion is a very important issue for the sake of patient-centered medical device development and emotion-related psychology fields. Although there have been many studies on emotion prediction, no studies have applied the heart rate variability and neuro-fuzzy approach to emotion prediction. We propose ANFEP(Adaptive Neuro Fuzzy System for Emotion Prediction) HRV. The ANFEP bases its core functions on an ANFIS(Adaptive Neuro-Fuzzy Inference System) which integrates neural networks with fuzzy systems as a vehicle for training predictive models. To prove the proposed model, 50 participants were invited to join the experiment and Heart rate variability was obtained and used to input the ANFEP model. The ANFEP model with STDRR and RMSSD as inputs and two membership functions per input variable showed the best results. The result out of applying the ANFEP to the HRV metrics proved to be significantly robust when compared with benchmarking methods like linear regression, support vector regression, neural network, and random forest. The results show that reliable prediction of emotion is possible with less input and it is necessary to develop a more accurate and reliable emotion recognition system.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.17
no.1
/
pp.229-249
/
2022
This paper investigates machine learning models for predicting the designation of administrative issues in the KOSDAQ market through various techniques. When a company in the Korean stock market is designated as administrative issue, the market recognizes the event itself as negative information, causing losses to the company and investors. The purpose of this study is to evaluate alternative methods for developing a artificial intelligence service to examine a possibility to the designation of administrative issues early through the financial ratio of companies and to help investors manage portfolio risks. In this study, the independent variables used 21 financial ratios representing profitability, stability, activity, and growth. From 2011 to 2020, when K-IFRS was applied, financial data of companies in administrative issues and non-administrative issues stocks are sampled. Logistic regression analysis, decision tree, support vector machine, random forest, and LightGBM are used to predict the designation of administrative issues. According to the results of analysis, LightGBM with 82.73% classification accuracy is the best prediction model, and the prediction model with the lowest classification accuracy is a decision tree with 71.94% accuracy. As a result of checking the top three variables of the importance of variables in the decision tree-based learning model, the financial variables common in each model are ROE(Net profit) and Capital stock turnover ratio, which are relatively important variables in designating administrative issues. In general, it is confirmed that the learning model using the ensemble had higher predictive performance than the single learning model.
교통계획의 목적은 교통체계를 분석하여 교통과 활동간의 상호작용을 효율화시켜 도시 및 지역사회의 목표를 달성하는데 있으며, 합리적인 교통계획을 수립하여 한정된 투자재원을 효율적으로 배분하기 위해서는 교통수요에 대한 합리적 접근이 필요하다. 교통수요예측의 접근방법은 미시적인 개별적 접근방법과 거시적인 집단적 접근방법으로 구분되며, 다시 모형화 기법이 결정적인가 확률적인가에 따라 개별결정적, 개별활률적, 그리고 집단결정적, 집단확률적 모형의 4가지로 구분될 수 있다. 이 중에서 일반적으로 관심의 대상이 되는 2가지 형태는 집단결정적, 개발확률적 모형이다. 집단결정적모형은 전통적 교통수요예측모형에 해당되며, 개별확률적모형은 1970년대 Mc Fadden을 시작으로 Ben-Akiva, Manheim을 중심으로 한 소비자 행동선택 이론에 근거한 개별행태모형이 이에 해당된다. 개별행태모형은 개개인의 통행행태를 다른 모든 조건이 동일할 때 개개인은 비용의 최소화를 추구하고, 비용과 관련한 통행행태는 거시적 수준에서의 주어진 제약 조건과 관계가 있으며, 의사결정은 확률분포에 의해서 결정되는 효용원칙(Efficiency Principle)에 입각하여 해석한다. 도시내와 도시간, 취업자와 비취업자, 출퇴근 시, 목적별 등의 여러 가지 통행에 있어서 다양한 변수들을 사용하여 교통수단 선택모형의 파라메카 값을 추정하고 통행패턴을 분석해 왔다. 본 논문에서는 개별행태모형인 로짓모형 중에서 집단다항로짓모형을 이용하여 여러 통행 중 공항시설의 접근에 필요한 교통수단 효용함수의 파라메타 값 추정 시, 일반적으로 사용되는 통행시간, 통행비용이라는 변수를 공통으로 두고, 대중교통의 경우에만 해당하는 환승이라는 특정대안변수(Specific alternative variable)를 첨가하여 그것이 수단선택에 미치는 영향을 분석한다. 또한, 대중교통의 속성을 가지고 있는 지하철과 버스를 하나의 대안으로 묶어서 효용함수를 구한 다음 다시 승용차, 택시, 대중교통을 독립된 대안으로 두고 모형을 정립하는 NESTED LOGIT모형으로 파라메타를 추정하여 대중교통의 효용에 관해 분석·비교하였다. 본 논문에 이용된 자료는 공항을 이용하는 이용객들을 대상으로 직접 설문·면접조사한 자료이며 대상 교통수단은 승용차, 택시, 지하철, 버스로 설정하였다.
The purpose of this research is to identify the different determinants according to the types of motion pictures; art film and commercial film. We found that the regression equations of two types of motions pictures are structurally different. More specifically, we identified that the number of screens, viewers' evaluation, and genres have a significant relationship with the performance of motion pictures both in the commercial and art film. However, director, ratings, critics, power of agency, nationality, and the timing of release affect the performance of motion pictures just on the art films.
In the developing country, the transportation situation is changed very quickly and the transportation environment is not stable. So the transportation planning should be frequently made in considering the limited cost and time. And the traditional large-scale survey(household survey, roadside interview, etc.) has many Problem like the difficulty for doing it and getting mood results. Therefore the study about the method of evaluation on the traffic count based O/D matrix is Processing actively recently. Though the many study for the network in the realistic size are enacted, the study for comparing with the advantage and disadvantage of each method are few. Therefore this study mainly deals with the static method among the existing models of evaluation on the traffic count based O/D matrix(in terms of the transportation plan). Bi-level(GU) and gradient method are selected as main alternative model and analyzed their capability and validity. For testing the reliability of the models, Bi-level(GLS) and gradient method are adapted to toy network. Then we analyze the result of testing, and study the way for large network.
Journal of the Korean Society of Hazard Mitigation
/
v.9
no.1
/
pp.107-113
/
2009
This study has been conducted for the long-term riverbed change prediction on Geum River and Miho Stream surrounding the planned Multifunctional Administrative City and the neighboring regions by the construction of a small dam. Based on the analysis of vertical riverbed changes of the cross-sectional data for the years 1988, 2002 and 2007, minimum bed elevation significantly decreased in both Geum River and Miho Stream in 2007 as compared to 1988. Compared to 2002, however, a slight elevation change was observed. To make a long-term prediction on riverbed changes by the construction of a small dam, a one dimensional HEC-RAS 4.0 model has been used. By the fixed bed model test, the water levels were calibrated. By using the cross-sectional data of 1988 and 2002, verification was conducted under a movable bed model. According to the prediction of riverbed changes for each scenario with varying height of small dam, minor impact is expected around Miho Stream while major impact is expected around Geum River by 2017, as the small dam height increases. If the small dam is 7m-high, for example, it's been simulated that 1.59m deposition would be expected around the upper stream of Miho Stream Confluence while 1.98m scour would be expected around the downstream of the small dam.
Subways are eco-friendly public transportation that can transport large numbers of passengers safely and quickly. It is necessary to predict the accurate number of passengers in order to increase public interest in subway. This study groups stations on Lines 1 to 9 of the Seoul Metropolitan Subway using clustering analysis. We propose one final prediction model for all stations and three optimal prediction models for each cluster. We found three groups of stations out of 294 total subway stations. The Group 1 area is industrial and commercial, the Group 2 ares is residential and commercial, and the Group 3 area is residential districts. Various data mining techniques were conducted for each group, as well as driving some influential factors on demand prediction. We use our model to predict the number of passengers for 8 new stations which are part of the 3rd extension plan of Seoul metro line 9 opened in October 2018. The estimated average number of passengers per hour is from 241 to 452 and the estimated maximum number of passengers per hour is from 969 to 1515. We believe our analysis can help improve the efficiency of public transportation policy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.