• Title/Summary/Keyword: 예측 중심의 모형

Search Result 573, Processing Time 0.028 seconds

A GIS-based Traffic Accident Analysis on Highways using Alignment Related Risk Indices (고속도로 선형조건과 GIS 기반 교통사고 위험도지수 분석 (호남.영동.중부고속도로를 중심으로))

  • 강승림;박창호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.21-40
    • /
    • 2003
  • A traffic accident analysis method was developed and tested based on the highway alignment risk indices using geographic information systems(GIS). Impacts of the highway alignment on traffic accidents have been identified by examining accidents occurred on different alignment conditions and by investigating traffic accident risk indices(TARI). Evaluative criteria are suggested using geometric design elements as an independent variable. Traffic accident rates were forecasted more realistically and objectively by considering the interaction between highway alignment factors and the design consistency. And traffic accident risk indices and risk ratings were suggested based on model estimation results and accident data. Finally, forecasting traffic accident rates, evaluating the level of risk and then visualizing information graphically were combined into one system called risk assessment system by means of GIS. This risk assessment system is expected to play a major role in designing four-lane highways and developing remedies for highway sections susceptible to traffic accidents.

A Study on Predictive Modeling of Public Data: Survival of Fried Chicken Restaurants in Seoul (서울 치킨집 폐업 예측 모형 개발 연구)

  • Bang, Junah;Son, Kwangmin;Lee, So Jung Ashley;Lee, Hyeongeun;Jo, Subin
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.35-49
    • /
    • 2018
  • It seems unrealistic to say that fried chicken, often known as the American soul food, has one of the biggest markets in South Korea. Yet, South Korea owns more numbers of fried chicken restaurants than those of McDonald's franchise globally[4]. Needless to say not all these fast-food commerce survive in such small country. In this study, we propose a predictive model that could potentially help one's decision whilst deciding to open a store. We've extracted all fried chicken restaurants registered at the Korean Ministry of the Interior and Safety, then collected a number of features that seem relevant to a store's closure. After comparing the results of different algorithms, we conclude that in order to best predict a store's survival is FDA(Flexible Discriminant Analysis). While Neural Network showed the highest prediction rate, FDA showed better balanced performance considering sensitivity and specificity.

Development of Predicting Models of the Operating Speed Considering on Traffic Operation Characteristics and Road Alignment Factors In Express Highways (고속도로 교통운영 특성 및 도로선형요소를 반영한 주행속도 예측모형 개발)

  • Lee, Jeom-Ho;Hong, Da-Hui;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.5 s.91
    • /
    • pp.109-121
    • /
    • 2006
  • The road should be designed in the consistent alignment which the driver can drive safely. Also, proper highway environments in order to maintain optimal operational speeds on highway sections should be provided In design stage, for highway environments, it is essential for an operational speed estimation model to different highway environments. If a method which could evaluate the status of the road safety is developed through this operational speed estimation model, it is possible to provide safe and more comfortable highways to road users. In the study factors to effect on operational speeds are classified into three groups horizontal & vertical alignments and traffic operation characteristic factors. Factors are chosen to effect on operational speeds by using collation analysis as classifications of tangent sections, horizontal curve sections and vertical curve sections. In order to develop operational speed estimation models in express highways, multi-regression analysis has been used in this study using the selected factors. This study has meaning that the developed estimation models for operational speeds and evaluation of degree of safety to horizontal and vortical alignments simultaneous. In order to represent whole area of the country with the developed models, the models should be re-analyzed with vast data related with road alignment factors in the near future.

Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV) (심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.239-247
    • /
    • 2019
  • An accurate prediction of emotion is a very important issue for the sake of patient-centered medical device development and emotion-related psychology fields. Although there have been many studies on emotion prediction, no studies have applied the heart rate variability and neuro-fuzzy approach to emotion prediction. We propose ANFEP(Adaptive Neuro Fuzzy System for Emotion Prediction) HRV. The ANFEP bases its core functions on an ANFIS(Adaptive Neuro-Fuzzy Inference System) which integrates neural networks with fuzzy systems as a vehicle for training predictive models. To prove the proposed model, 50 participants were invited to join the experiment and Heart rate variability was obtained and used to input the ANFEP model. The ANFEP model with STDRR and RMSSD as inputs and two membership functions per input variable showed the best results. The result out of applying the ANFEP to the HRV metrics proved to be significantly robust when compared with benchmarking methods like linear regression, support vector regression, neural network, and random forest. The results show that reliable prediction of emotion is possible with less input and it is necessary to develop a more accurate and reliable emotion recognition system.

Study on Predicting the Designation of Administrative Issue in the KOSDAQ Market Based on Machine Learning Based on Financial Data (머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구: 재무적 데이터를 중심으로)

  • Yoon, Yanghyun;Kim, Taekyung;Kim, Suyeong
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.229-249
    • /
    • 2022
  • This paper investigates machine learning models for predicting the designation of administrative issues in the KOSDAQ market through various techniques. When a company in the Korean stock market is designated as administrative issue, the market recognizes the event itself as negative information, causing losses to the company and investors. The purpose of this study is to evaluate alternative methods for developing a artificial intelligence service to examine a possibility to the designation of administrative issues early through the financial ratio of companies and to help investors manage portfolio risks. In this study, the independent variables used 21 financial ratios representing profitability, stability, activity, and growth. From 2011 to 2020, when K-IFRS was applied, financial data of companies in administrative issues and non-administrative issues stocks are sampled. Logistic regression analysis, decision tree, support vector machine, random forest, and LightGBM are used to predict the designation of administrative issues. According to the results of analysis, LightGBM with 82.73% classification accuracy is the best prediction model, and the prediction model with the lowest classification accuracy is a decision tree with 71.94% accuracy. As a result of checking the top three variables of the importance of variables in the decision tree-based learning model, the financial variables common in each model are ROE(Net profit) and Capital stock turnover ratio, which are relatively important variables in designating administrative issues. In general, it is confirmed that the learning model using the ensemble had higher predictive performance than the single learning model.

공항 접근 교통수단선택 효용함수의 매개변수 추정 및 민감도 분석에 관한 연구

  • 김지홍;전경수
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10b
    • /
    • pp.261-261
    • /
    • 1998
  • 교통계획의 목적은 교통체계를 분석하여 교통과 활동간의 상호작용을 효율화시켜 도시 및 지역사회의 목표를 달성하는데 있으며, 합리적인 교통계획을 수립하여 한정된 투자재원을 효율적으로 배분하기 위해서는 교통수요에 대한 합리적 접근이 필요하다. 교통수요예측의 접근방법은 미시적인 개별적 접근방법과 거시적인 집단적 접근방법으로 구분되며, 다시 모형화 기법이 결정적인가 확률적인가에 따라 개별결정적, 개별활률적, 그리고 집단결정적, 집단확률적 모형의 4가지로 구분될 수 있다. 이 중에서 일반적으로 관심의 대상이 되는 2가지 형태는 집단결정적, 개발확률적 모형이다. 집단결정적모형은 전통적 교통수요예측모형에 해당되며, 개별확률적모형은 1970년대 Mc Fadden을 시작으로 Ben-Akiva, Manheim을 중심으로 한 소비자 행동선택 이론에 근거한 개별행태모형이 이에 해당된다. 개별행태모형은 개개인의 통행행태를 다른 모든 조건이 동일할 때 개개인은 비용의 최소화를 추구하고, 비용과 관련한 통행행태는 거시적 수준에서의 주어진 제약 조건과 관계가 있으며, 의사결정은 확률분포에 의해서 결정되는 효용원칙(Efficiency Principle)에 입각하여 해석한다. 도시내와 도시간, 취업자와 비취업자, 출퇴근 시, 목적별 등의 여러 가지 통행에 있어서 다양한 변수들을 사용하여 교통수단 선택모형의 파라메카 값을 추정하고 통행패턴을 분석해 왔다. 본 논문에서는 개별행태모형인 로짓모형 중에서 집단다항로짓모형을 이용하여 여러 통행 중 공항시설의 접근에 필요한 교통수단 효용함수의 파라메타 값 추정 시, 일반적으로 사용되는 통행시간, 통행비용이라는 변수를 공통으로 두고, 대중교통의 경우에만 해당하는 환승이라는 특정대안변수(Specific alternative variable)를 첨가하여 그것이 수단선택에 미치는 영향을 분석한다. 또한, 대중교통의 속성을 가지고 있는 지하철과 버스를 하나의 대안으로 묶어서 효용함수를 구한 다음 다시 승용차, 택시, 대중교통을 독립된 대안으로 두고 모형을 정립하는 NESTED LOGIT모형으로 파라메타를 추정하여 대중교통의 효용에 관해 분석·비교하였다. 본 논문에 이용된 자료는 공항을 이용하는 이용객들을 대상으로 직접 설문·면접조사한 자료이며 대상 교통수단은 승용차, 택시, 지하철, 버스로 설정하였다.

  • PDF

A Comparison Study of the Determinants of Performance of Motion Pictures: Art Film vs. Commercial Film (영화 유형별 영화 흥행 성과 예측 요인의 비교 연구: 예술 영화와 상업 영화 비교를 중심으로)

  • Kim, So-Young;Im, Seung-Hee;Jung, Ye-Seul
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.381-393
    • /
    • 2010
  • The purpose of this research is to identify the different determinants according to the types of motion pictures; art film and commercial film. We found that the regression equations of two types of motions pictures are structurally different. More specifically, we identified that the number of screens, viewers' evaluation, and genres have a significant relationship with the performance of motion pictures both in the commercial and art film. However, director, ratings, critics, power of agency, nationality, and the timing of release affect the performance of motion pictures just on the art films.

Comparative study on the O/D estimation using Gradient method and Generalized Least Square method (Gradient방법과 일반화최소자승법을 이용한 관측교통량기반 O/D 추정방법에 관한 예측력 비교평가 연구)

  • 이승재;김종형
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.2
    • /
    • pp.41-52
    • /
    • 2000
  • In the developing country, the transportation situation is changed very quickly and the transportation environment is not stable. So the transportation planning should be frequently made in considering the limited cost and time. And the traditional large-scale survey(household survey, roadside interview, etc.) has many Problem like the difficulty for doing it and getting mood results. Therefore the study about the method of evaluation on the traffic count based O/D matrix is Processing actively recently. Though the many study for the network in the realistic size are enacted, the study for comparing with the advantage and disadvantage of each method are few. Therefore this study mainly deals with the static method among the existing models of evaluation on the traffic count based O/D matrix(in terms of the transportation plan). Bi-level(GU) and gradient method are selected as main alternative model and analyzed their capability and validity. For testing the reliability of the models, Bi-level(GLS) and gradient method are adapted to toy network. Then we analyze the result of testing, and study the way for large network.

  • PDF

A Riverbed Change Prediction by River-Crossing Structure -Focused on the Major River Reaches of the Multifunctional Administrative City- (하천 횡단구조물에 의한 하상변동 예측 - 행정중심복합도시 주요 하천구간을 중심으로 -)

  • Yeon, Kyu-Sung;Jeong, Sang-Man;Yun, Chan-Young;Lee, Joo-Heon;Shin, Kwang-Seob
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.107-113
    • /
    • 2009
  • This study has been conducted for the long-term riverbed change prediction on Geum River and Miho Stream surrounding the planned Multifunctional Administrative City and the neighboring regions by the construction of a small dam. Based on the analysis of vertical riverbed changes of the cross-sectional data for the years 1988, 2002 and 2007, minimum bed elevation significantly decreased in both Geum River and Miho Stream in 2007 as compared to 1988. Compared to 2002, however, a slight elevation change was observed. To make a long-term prediction on riverbed changes by the construction of a small dam, a one dimensional HEC-RAS 4.0 model has been used. By the fixed bed model test, the water levels were calibrated. By using the cross-sectional data of 1988 and 2002, verification was conducted under a movable bed model. According to the prediction of riverbed changes for each scenario with varying height of small dam, minor impact is expected around Miho Stream while major impact is expected around Geum River by 2017, as the small dam height increases. If the small dam is 7m-high, for example, it's been simulated that 1.59m deposition would be expected around the upper stream of Miho Stream Confluence while 1.98m scour would be expected around the downstream of the small dam.

A study on the number of passengers using the subway stations in Seoul (데이터마이닝 기법을 이용한 서울시 지하철역 승차인원 예측)

  • Cho, Soojin;Kim, Bogyeong;Kim, Nahyun;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.111-128
    • /
    • 2019
  • Subways are eco-friendly public transportation that can transport large numbers of passengers safely and quickly. It is necessary to predict the accurate number of passengers in order to increase public interest in subway. This study groups stations on Lines 1 to 9 of the Seoul Metropolitan Subway using clustering analysis. We propose one final prediction model for all stations and three optimal prediction models for each cluster. We found three groups of stations out of 294 total subway stations. The Group 1 area is industrial and commercial, the Group 2 ares is residential and commercial, and the Group 3 area is residential districts. Various data mining techniques were conducted for each group, as well as driving some influential factors on demand prediction. We use our model to predict the number of passengers for 8 new stations which are part of the 3rd extension plan of Seoul metro line 9 opened in October 2018. The estimated average number of passengers per hour is from 241 to 452 and the estimated maximum number of passengers per hour is from 969 to 1515. We believe our analysis can help improve the efficiency of public transportation policy.