• Title/Summary/Keyword: 예측 중심의 모형

Search Result 573, Processing Time 0.028 seconds

Application of machine learning models for estimating house price (단독주택가격 추정을 위한 기계학습 모형의 응용)

  • Lee, Chang Ro;Park, Key Ho
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.2
    • /
    • pp.219-233
    • /
    • 2016
  • In social science fields, statistical models are used almost exclusively for causal explanation, and explanatory modeling has been a mainstream until now. In contrast, predictive modeling has been rare in the fields. Hence, we focus on constructing the predictive non-parametric model, instead of the explanatory model. Gangnam-gu, Seoul was chosen as a study area and we collected single-family house sales data sold between 2011 and 2014. We applied non-parametric models proposed in machine learning area including generalized additive model(GAM), random forest, multivariate adaptive regression splines(MARS) and support vector machines(SVM). Models developed recently such as MARS and SVM were found to be superior in predictive power for house price estimation. Finally, spatial autocorrelation was accounted for in the non-parametric models additionally, and the result showed that their predictive power was enhanced further. We hope that this study will prompt methodology for property price estimation to be extended from traditional parametric models into non-parametric ones.

  • PDF

고해상도 Icosahedral-Hexagonal 격자 전구모형 GME를 이용한 태풍예측에 관한 연구

  • Lee, Kyung-Min;Oh, Jae-Ho;Majewski, Detlev
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.304-309
    • /
    • 2008
  • 기존의 태풍예측과 관련된 연구들은 전 지구적인 흐름이 직접적으로 계산되지 않은 중규모 기상모형이나 태풍모형들을 이용하여왔다. 하지만 최근 전 세계적으로 전구 규모의 모형들이 40km 이하의 고해상도 모형들이 개발되어 20km이하의 초고해상도 시물레이션이 가능해짐에 따라 지역적인 기상현상들을 전구모형을 통해서 재현해 내고 있다. 따라서 본 연구에서는 고해상도 전구모형을 이용하여 태풍 실험을 하고자 하며, 독일기상청에서 개발된 Icosahedral-hexagonal 격자체계의 GME전구 모형을 이용한 태풍모의 결과를 기상청 태풍 best track과 비교 분석 하였다. 실험에 사용된 모형 분해능은 연직 47layer (7 soil layer 포함), 수평 약 40km와 20km으로 구성되었다. 최근 3년($2005{\sim}2007$)간의 동아시아지역을 지나간 태풍을 대상으로 하였다. 태풍모의 시작시간은 각 TD(Tropical Depression)발생 24시간 전 자료를 이용하였으며, 각 태풍의 소멸 24시간 후까지 모의하였다. GME 모형을 이용한 태풍모의 결과에서 best track의 경우 모의 시작 후 약 168시간 forcast 결과가 매우 유사한 경로를 따라 진행해 가고 있으며, 태풍의 전향이 이루어지는 시각은 ${\pm}3$시간 내외의 오차를 보이고 있다. 태풍경로의 경우 40km 결과에 비해 20km 모의 결과가 best track에 더 가까운 결과를 보이고 있다. 중심기압변화의 경우 40km의 결과가 20km 결과에 비해 변화경향이 유사한 형태를 보이고 있으며, 20km 결과의 경우 중심기압의 변화가 다소 급하게 나타나는 경향을 보이는 특성을 가지고 있지만 40km결과에 비해 최저 중심기압이 더욱 뚜렷하게 나타나고 있으며 특히, MANYI case의 경우 관측값 930hPa보다 더 낮은 911.4hPa의 결과를 보이고 있다. 풍속의 경우도 중심기압변화와 유사한 결과를 보이고 있으나, 최대 풍속의 경우 40km 결과에 비해 20km결과가 관측과의 오차범위가 $2{\sim}3\;m/s$ 내외로 나타나고 있다. 그리고 GME모형의 경우 태풍(TD) 발생 약168시간 이전에 예측이 가능한 결과를 보인다. 이 연구의 결과는 다른 기상모형에서 태풍 강도가 약하게 모의되던 현상이 상당히 개선된 것을 알 수 있으며, 이는 20km 고해상도 GME 모형이 태풍예측모형으로 활용이 간능 할 것으로 사료 된다.

  • PDF

A Study on Prediction Method of Inundation Area by Using the result of 1D Runoff Model and Urban hydrology model (1차원 강우-유출모형과 도시유출모형의 모의결과를 이용한 침수면적 예측방법에 관한 연구)

  • Hwang, Sung Hwan;Lee, Jung Hwan;Kang, Ho Yeong;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.38-38
    • /
    • 2017
  • 본 연구는 내수침수에 의한 침수면적 예측을 위한 강우특성과 1차원 유출모형의 유출특성 및 월류특성 자료를 이용한 침수면적의 정확도를 다양한 호우사상을 적용하여 분석하였다. 국내에서 침수 취약지역 예측을 위해서 강우-유출모형의 유출량 예측 즉 홍수추적을 중심으로 이루어지고 있는 실정이다. 기존 모형이 홍수추적을 중심으로 이루어진 것은 대유역의 경우에 XP-SWMM 모형과 같은 정밀모형을 이용할 경우 긴 모의시간으로 인하여 예경보 발령을 위한 골든타임 확보가 어려우며, 홍수량 예측을 통하여 예측된 침수피해에 대한 정밀도 확보가 어렵기 때문에 실제 상황에 적용하기 어려운 문제점이 발생하고 있다. 컴퓨터 하드웨어의 발전에 따른 연산속도의 증가와 빅데이터 처리기술을 발전에 따라서 10년 전과 비교하여 2차원 침수면적 예측시간이 단축되기는 하였지만, 실제 침수면적 예측에 적용하기는 어려운 실정이다. 따라서, 모의시간이 짧은 1차원 강우-유출모형, 1차원 도시유출모형을 이용한 침수면적 예측방법에 대하여 연구하였다. 홍수피해 예측을 위하여 다양한 수문학적 인자의 영향 분석을 위해서 XP-SWMM 모형의 다양한 형태의 강우입력자료에 따른 1차원 유출 모의결과와 2차원 지표류 모의결과를 이용하여, 2차원 침수면적 예측결과를 추정하기 위한 수문학적 인자의 적용방법에 대하여 분석하였다. 모의시간이 짧은 강우-유출모형과 1차원 도시유출모형을 이용하여 도출한 수문학적 인자를 이용한 침수면적의 추정방법을 분석을 비교분석함으로써 침수면적 예측 시스템 구축방안에 대하여 구체적인 수문학적 인자들 생성을 위한 단계적 모형 적용방안 수립을 위한 자료로 활용할 수 있을 것이다.

  • PDF

퍼지논리를 이용한 마우스의 감성모형화 및 감성예측

  • 박문규;박민용
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.2-7
    • /
    • 1996
  • 인간이 마우스를 사용하면서 느끼는 감성은 불확실하고 모호하여 정량화하고 모형화하는데 많은 어려 움이 있었다. 본 연구에서는 퍼지로직을 이용하여 기존의 통계적 분석방법의 한계를 극복하고 좀 더 실제적인 감성예측을 위한 모형화의 방법론을 제시하고자 한다. 즉 퍼지회구식을 이용하여 인간이 마 우스를 사용할 때의 감성을 모형화 하였으며 이를 통하여 새로운 모델에 대한 감성의 예측의 방법을 제 시하였다. 본 연구에서 제시된 방법을 적용하기 위해 시판되고 있는 볼마우스 9종, 대학원생 6명을 대상으로 실험을 실시한 결과, 퍼지회귀식에 의한 감성의 예측을 예측값의 중심뿐만이 아니라 개략적인 산포도 함께 제시함으로써 보다 현실적인 예측이 가능하였다.

  • PDF

Development of path travel time forecasting model using wavelet transformation and RBF neural network (웨이브렛 변환과 RBF 신경망을 이용한 경로통행시간 예측모형 개발 -시내버스 노선운행시간을 중심으로-)

  • 신승원;노정현
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.153-166
    • /
    • 1998
  • 본 연구에서는 도시 가로망에서의 구간 통행시간을 예측하기 위하여 time-frequency 분석의 일종인 웨이브렛변환과 RBF신경망 모형을 이용한 예측모형을 개발하였다. 웨이브렛 변환을 이용한 시계열 자료 분석을 통해서 통행시간에 내재되어 있는 다양한 패턴의 특징을 추출함으로써 오전/오후의 첨두현상, 신호교차로의 현시주기 등 주기적으로 발생되는 요인들에 의해서 통행시간 시계열 자료의 패턴에 나타나는 규칙성을 분석해 내었다. 분석된 패턴정보에 대한 규명은 카오스 이론을 근간으로한 시간지연좌표를 이용하여 시계열 자료의 규칙성을 시각적으로 판별하여 예측모형 구축에 활용하도록 하였다. 또, RBF신경망을 이용하여 예측범위의 공간적/시간적 확대에 따른 모형 구축에 소요되는 시간을 최소화하도록 하였으며, 시내버스 노선의 정류장간 운행시간 예측을 통해서 기존 연구에서 제기되었던 현실세계의 단순화, 다단계 예측시 정확성 등의 문제를 해결하였다. 예측실험결과 웨이브렛 변환을 데이터의 전처리 과정에 삽입하여 링크 통행시간의 패턴정보 예측에 활용할 경우, 기존의 예측모형에 비해서 훨씬 정확한 예측이 가능한 것으로 나타났으며, RBF 신경망은 짧은 학습시간에도 불구하고 역전파 신경망보다 우수한 예측력을 갖고 있는 것으로 밝혀졌다.

  • PDF

A Study on Inner Zone Trip Estimation Method in Gravity Model (중력모형에서 존내 분포통행 예측방법에 관한 연구)

  • Ryu, Yeong Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.763-769
    • /
    • 2006
  • Gravity Model estimates target year's distributed trips using three variables like as origin zone's trip production, destination zone's trip attraction and traffic impedance between origin zone centroid and destination zone centroid. Estimating inner zone trip by gravity model is impossible because traffic impedance of inner zone has "0" value. So till today, for estimating inner zone trips, other methods like growth factor model are used. This study proposed inner zone trip estimation method that calculates inner zone's traffic impedance using established gravity model and estimates inner zone trips by putting calculated traffic impedance into the gravity model. 1988 year's surveyed O-D as basic year's O-D, proposed method's and existing methods(growth factor method and regression model)'s estimated results of 1992 year's and 2004 year's were compared with each year's real O-D by $x^2$, RMSE, Correlation coefficient. And resulted that the proposed method is superior than other existing methods.

Development of Traffic Accident Forecasting Models Considering Urban-Transportation System Characteristics (토지이용 및 교통특성을 반영한 교통사고 예측모형 개발 연구)

  • Park, Jun-Tae;Jang, Il-Jun;Son, Ui-Yeong;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.39-56
    • /
    • 2011
  • This study proposed a traffic accident prediction model developed based on administrative districts of Seoul. The model was to find the relationship between accident rates and the representative land usage of the districts (development density) - the higher the development density (building floor area) is, the higher the traffic accident rate is. The findings showed that traffic accident statistics differ from (1) residential building floor area, (2) commercial building floor area and (3) business building floor area.

A Comparative Analysis for the knowledge of Data Mining Techniques with Experties (Data Mining 기법들과 전문가들로부터 추출된 지식에 관한 실증적 비교 연구)

  • 김광용;손광기;홍온선
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.41-58
    • /
    • 1998
  • 본 연구는 여러 가지 Data Mining 기법들로부터 도출된 지식과 AHP를 이용하여 도출된 전문가의 지식을 사용된 정보의 특성에 따라 조사하고, 이러한 각각의 지식들을 중심으로 부도예측 모형을 설계한 후, 각 모형의 특성 및 부도예측력에 대한 실증적 비교연구에 그 목적을 두고 있다. 사용된 Data Mining 기법들은 통계적 다중판별분석 모형, ID3 모형, 인공신경망 모형이며, 전문가 지식의 추출은 AHP를 사용하여 45명의 전문가로부터 부도와 관련하여 인터뷰 및 설문조사를 실시하였다. 특히 부도예측에 사용된 변수의 특성을 정량적 재무정보와 정성적 비재무정보로 나누어서 각 모형의 특성을 비교연구하였다. 연구결과 부도예측시 정성적정보의 중요성을 확인하였으며, 전문가의 지식을 기반으로한 AHP 모형이 위험예측모형으로 사용될 수 있음을 실증적으로 보여주었다.

  • PDF

A Study on the Prediction of Apartment Sale Price Using Machine Learning : Focused on the Collection of Internal and External Data and Price Prediction of Korean Apartments (기계학습을 이용한 아파트 매매가격 예측 연구 : 한국 아파트의 내·외적 데이터 수집과 가격 예측 중심으로)

  • Ju, Jeong-Min;Kang, Sun-Mee;Choi, Ji-Wung;Han, Youngwoo
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.956-959
    • /
    • 2020
  • 본 연구에서는 아파트를 대표할 수 있는 내·외적 데이터를 수집하고 인공지능 기술들을 활용하여 아파트 가격을 예측하는 시스템을 구축하고자 한다. 구체적으로 웹크롤링 기법을 통해 수집한 아파트 내·외적 데이터의 변수들에 대한 특성 선택(Feature Selection)을 수행하였고, 다양한 인공지능 기법을 활용하여 부동산 가격 예측 모형을 개발하였다. 아파트 가격 예측 모형 생성을 위해 Linear Regression, Ridge, Xgboost, Lightgbm, Catboost 등의 기계학습 알고리즘을 사용하였고, RMSE를 사용하여 각 예측 모형 간의 성능 비교를 수행하였다. 가장 성능이 좋은 예측 모형은 Xgboost기반 예측 모형이였으며, RMSE값이 약 0.0366으로 가장 낮았으며 테스트 데이터에 대한 정확도는 약 95.1%였다.

Development and Evaluation of Flood Prediction Models Using Artificial Intelligence Techniques (인공지능 기법을 활용한 홍수예측모델 개발 및 평가 - 한강수계 댐을 중심으로 -)

  • Cho, Hemie;Uranchimeg, Sumiya;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.131-131
    • /
    • 2022
  • 기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.

  • PDF