지하수의 질산오염 문제는 한국을 포함한 세계의 여러나라에서 보고되어 왔다. 질산염은 청색증 유발물질로서 뿐만 아니라 발암물질일 가능성도 동물실험을 통해 제기되고 있다. 대부분의 경우에 지하수 질산염의 주요 오염원은 농작물 생산량의 향상을 위해 사용하는 비료이다. 그밖에 가축의 분뇨, 산업폐기물 및 생활하수도 지역에 띠라 질산염 오염원이 될 시기는 언제인가를 결정하기 위하여 의사결정권자는 여러가지의 작물경작방법에 따라 지하수 질산오염이 어떻게 변하는지를 시계열로 예측할 필요성이 있다. 그러나 직물경작방법에 따른 지하수 질산오염을 예측하는데 필요한 토질특성, 비료의 사용량, 작물의 종류 같은 자료의 대부분은 불확실성을 내포하고 있다. 이러한 불확실성은 경제성 때문에 자료의 불충분한 조사와 인간지식의 부족으로 인해 발생한다. 본 논문에서는 불확실성을 고려하면서 작물경작방법에 따른 지하수 질산오염의 변화를 예측하는 방법을 실제적인 사례를 통해 보여준다. 그리고 자료의 불확실성을 표현하기 위해 퍼지집합이론(fuzzy set theory)은 본 논문에서 응용되었다.
유출예측량을 모의할 때 과거와 현재의 수문자료를 이용한다는 측면에서 미래 예측결과의 불확실성을 완전히 제거할 수는 없겠지만, 다양한 기법별 분석에 의하여 불확실성을 감소시킬 수 있다. 본 연구에서는 유출예측의 정확성 향상을 위해 다양한 유출예측 기법을 적용 및 평가하였으며 확률론적 예측을 가능하게 하는 예측기법인 ESP와 관측 시계열 자료를 이용한 통계기법으로 공주지점의 유출예측을 수행하였다. 각 기법에 따른 유출예측 결과의 신뢰성 평가는 MAE(Mean Absolute Error), RMSE(Root Mean Squared Error), RRMSE(Relative Root Mean Squared Error), Mean Absolute Percentage Error (MAPE), TIC(Theil Inequality Coefficient)를 이용하였다. ESP 확률을 이용하여 예측한 유출결과와 통계적 시계열 분석에 의해 예측된 유출결과를 MAE, RMSE, RRMSE, MAPE, TIC를 이용하여 비교 분석하였으며 유출예측의 개선효과를 확인해본 결과, ESP 확률을 이용한 예측이 MAE(10.6), RMSE(15.14), RRMSE(0.244), MAPE(22.74%), TIC(0.13)으로 평가되었으며 MAE(23.2), RMSE(37.13), RRMSE(0.596), MAPE(26.69%), TIC(0.30)으로 평가된 ARMA와 MAE(26.4), RMSE(34.44), RRMSE(0.563), MAPE(47.38%), TIC(0.25)으로 평가된 Winters 에 비해 신뢰성이 높게 나타났다.
본 논문에서는 상수 입력지연을 갖는 이산시간 선형시스템을 위한 기존의 예측기 피드백 제어기의 구조적 모델 불확실성에 대한 강인성을 해석한다. 상수 입력지연을 1차 PdE (Partial difference Equation)로 모델링하여 입력지연을 PdE 상태변수로 대체하고 백스테핑 변환을 적용하여 목표 시스템을 구축한다. 목표 시스템을 기반으로 전체 상태변수를 포함하는 명시적 리아푸노프 함수를 구성하여 안정성이 유지되는 구조적 모델 불확실성의 최대 크기의 존재를 증명하고 예측기 피드백 제어기의 강인성을 확립한다. 모의실험을 통하여 모델 불확실성이 존재하는 경우에도 닫힌 루프 시스템의 안정성이 유지되는 것을 예증하고 예측기 피드백 제어기의 강인성을 검증한다.
특정 자료의 시간의 흐름에 따른 예측치를 추정하는 방법으로 AR Model 즉, 자기회귀모형이 많이 사용되고 있다. AR Model은 변수의 현재 값을 과거 값의 함수로 나타내게 되는데, 이런 시계열 분석 모델을 사용할 때 매개변수의 추정 과정이 필수적으로 요구된다. 일반적으로 매개변수를 추정하는 방법에는 확률적근사법(stochastic approximation), 최소제곱법(method of least square), 자기상관법(method of autocorrelation method), 최우도법(method of maximum likelihood) 등이 있다. AR Model에서 가장 많이 사용되는 최우도법은 표본크기가 충분히 클 때 가장 효율적인 방법으로 평가되지만 수치적으로 해를 구하는 과정이 복잡한 경우가 많으며, 해를 구하지 못하는 어려움이 따르기도 한다. 또한 표본 크기가 작을 때 일반적으로 잘 일치하지 않은 결과를 얻게 된다. 우리나라의 강우, 유량 등의 자료는 자료의 수가 적은 경우가 많기 때문에 최우도법을 통한 매개변수 추정 시 불확실성이 내재되어있지만 그것을 정량적으로 제시하는데 한계가 있다. 본 연구에서는 AR Model의 매개변수 추정 시 Bayesian 기법으로 매개변수의 사후분포(posterior distribution)를 제공하여 매개변수의 불확실성 구간을 정량적으로 표현하게 됨으로써, 시계열 분석을 통해 보다 신뢰성 있는 예측치를 얻을 수 있으리라 판단된다.
이 논문에서는 지구통계학적 시뮬레이션을 이용하여 자료 표현에서의 불확실성이 최종적인 공간통합에 미치는 영향을 정량적으로 분석하고자 하였다. 광물자원 탐사를 위한 공간통합 사례연구를 통해 시뮬레이션 결과에 따라 예측 능력의 차이가 나타남을 확인 할 수 있었으며, 결론적으로 지구통계학적 시뮬레이션이 공간 자료의 불확실성 모델링에 효율적으로 이용될 수 있을 것으로 판단된다.
국내 경사식 방파제의 대표적인 피복재인 Tetrapod는 대부분 경험식을 사용하여 중량을 산정한다. 경험식은 수리 실험의 결과를 곡선맞춤(curve-fitting)하여 제안되기 때문에 실험 오차에 따른 불확실성이 내포되어 있다. 이런 불확실성을 최소화하기 위해 인경신경망과 M5' model tree를 사용하여 피복재 안정수를 예측하였다. 각 모형의 불확실성의 정도는 예측된 안정수와 수리실험의 안정수 사이의 일치지수(index of agreement)를 사용하여 평가하였다. 일치지수가 가장 큰 인공신경망은 우수한 예측 능력을 가지고 있지만 일반 설계자들이 쉽게 사용할 수 없는 큰 단점이 있다. 반면에 M5' model tree는 인공신경망보다는 예측 능력이 조금 떨어지지만 기존의 경험식보다는 예측능력이 우수하고 또한 일반 설계자들이 쉽게 사용할 수 있는 공식의 형태로 주어지는 장점이 있다.
본 연구에서는 조건부 모사 기법 중 순차 가우시안 시뮬레이션(SGS)과 순차 지시 시뮬레이션(SIS)을 이용하여 터널설계 시 미시추구간의 암반등급(RMR)을 예측하여 보았다. 총 30개의 시추공자료 가운데 25개의 시추공자료를 이용하여 순차 가우시안 시뮬레이션과 순차 지시 시뮬레이션을 수행하였으며, 나머지 5개의 시추공에서의 실제 암반등급과 예측 암반등급을 비교하여 보았다. 그 결과 조건부 모사 기법은 암반등급의 공간적 분포특성을 비교적 잘 예측할 수 있고, 예측의 불확실성을 정량적으로 평가할 수 있는 효과적인 방법임을 확인할 수 있었다. 따라서 조건부 모사 기법의 결과는 미시추구간의 암반등급을 예측하는데 있어서 유용한 정보를 제공 해 줄 수 있을 것으로 판단된다.
강우유출모형의 입력 자료로 사용되는 강우 관측 자료의 불확실성이 유량예측에 미치는 영향을 분석하기 위하여 모형변수 검정의 불확실성 연구에서 사용하는 GLUE (Generalized Likelihood Uncertainty Estimation)방법을 입력 자료 부분으로 확장하여 적용 하였다. 독일의 Weida 유역의 강우 관측 자료를 바탕으로 구조적 및 비구조적인 불확실성 부분을 각각 구조적인 오차 수정 과정과 DUE (Data Uncertainty Engine)을 통하여 강우자료를 구성하였다. 이를 유역의 수문학적 작용을 고려하기 위해 선정한 집중형 강우유출모형, PDM (Probability Distribution Model)에 MC (Monte Carlo)와 GLUE 방법을 활용하여 적용하였다. MC검정변수들의 검정 후 반응 표면(Posterior response surface)을 검토하고 GLUE 의 반응검정 모형변수(Behavioural model parameter set)를 선택, 간략한 GLUE 유량곡선들을 계산하였다. 계산된 GLUE 유량곡선들을 모두 합하여 앙상블 유량을 산정하고, 이 유량의 90 분위를 강우량자료 및 모형변수 검정의 불확실성을 고려한 신뢰구간으로 제시하였다. PDM 모형의 결과는 유량곡선의 전구간에서 안정적인 모의 능력을 보여주고 있으나, 첨두유량 부분이 적게 산정되는 문제점을 보이고 있다. 본 연구에서 상대적으로 적은 수의 강우 시나리오 및 반응검정 모형변수의 적용이라는 한계에도 불구하고, GLUE 방법을 강우관측자료의 불확실성 부분으로 확장하여 강우자료 및 변수 검정의 불확실성을 고려한 모의된 유량예측의 신뢰구간의 적용가능성을 보여주고 있다.
가뭄의 피해를 줄이기 위해서는 시기적절한 용수관리와 지역주민의 절수 유도가 필요하며, 이를 위해서는 가뭄의 현황 및 전망에 대한 정보가 무엇보다 중요하다. 특히 생 공용수를 공급하는 다목적댐의 경우 저수량에 대한 향후 전망은 용수관리를 위한 가장 중요한 정보이다. 이에 본 연구에서는 핵밀도함수를 활용하여 유입량의 불확실성을 고려한 확률론적 저수량 예측 모형을 구축하고, 그 적용성과 활용성을 분석하였다. 확률론적 저수량 예측 모형은 현재의 저수량을 기준으로 시간의 변화에 따른 저수량을 확률적으로 예측할 수 있다. 이를 통해 현재의 가뭄상황에서 향후 저수량의 변화 양상을 파악하여 중장기적인 대응이 가능하고 특정시점의 목표 저수량을 달성하기 위한 용수 비축량을 산정할 수 있어 용수관리에 관한 의사결정을 위한 도구로 활용이 가능할 것으로 판단된다.
물은 생물의 생존을 위해 필수적인 요소로 인류가 시작된 이래로 물을 효율적으로 이용하고 안전하게 관리하기 위한 노력은 계속되어 왔다. 최근 지구 온난화가 주요 원인으로 알려진 국지성 집중호우의 피해는 매우 심각하며, 이로 인해 치수에 대한 중요성은 날로 커지고 있다. 지금까지 사용해 왔던 홍수 예 경보 과정은 특정 지점의 유출량을 예측하기 위해서 강우-유출 모형을 운영하였다. 그러나 물리적 모형의 경우 운영에 필요한 매개변수의 결정과정이 복잡하고, 매개변수 결정을 위해 많은 자료를 필요로 한다. 또한 그 매개변수의 결정과정은 많은 불확실성을 포함하고 있어서 모형의 운영을 위한 전처리과정과 계산과정을 거치는 동안 발생한 오차가 누적되어 결과물 속에는 많은 오차가 포함되어 있다. 본 연구에서는 기존의 홍수 예 경보 시스템의 문제점과 불확실성을 최대한 감소시키고 더 우수한 유출량 예측을 위해 neuro-fuzzy 추론 기법을 이용한 모형인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 사용하여 하천수위를 예측하였다. ANFIS는 신경회로망과 퍼지이론을 결합한 기법으로 신경회로망의 구조와 학습 능력을 이용하여 제어환경에서 획득한 입 출력 정보로부터 언어변수의 membership 함수와 제어규칙을 제어 대상에 적합하도록 자동으로 조종하는 기법이다. 본 연구에서는 ANFIS를 사용하여 탄천 하류에 위치한 대곡교의 수위를 예측하였다. 분석을 위해 2007년부터 2011년까지의 탄천 유역의 관측 강우자료와 수위 자료 중 강우강도와 지속시간, 강우 형태에 따라 7개의 강우사상을 선정하였다. 학습자료 및 보정자료의 변화에 따른 예측 오차를 비교하여 모형의 적용성과 적정성을 평가하였다. 적용결과 입력자료 구성의 경우 해당 시간의 강우량 및 수위자료와 10분 전 강우자료를 이용한 모델이 가장 우수한 예측을 보였고, 학습자료의 경우 자료의 길이가 길고, 최대홍수량이 큰 경우 가장 우수한 예측 결과를 보였다. 본 연구의 적용결과 가장 우수한 모형의 경우 30분 예측 첨두수위 오차는 0.32%, RMSE는 0.05m 이고 예측시간이 길어짐에 따라 오차가 비선형적으로 증가하는 경향을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.