• 제목/요약/키워드: 예측 불확실성

검색결과 829건 처리시간 0.036초

불확실 상황에서 질산 폭로 평가 (Nitrate Exposure Assessment under Uncertainty)

  • 이용운
    • 환경영향평가
    • /
    • 제4권2호
    • /
    • pp.105-121
    • /
    • 1995
  • 지하수의 질산오염 문제는 한국을 포함한 세계의 여러나라에서 보고되어 왔다. 질산염은 청색증 유발물질로서 뿐만 아니라 발암물질일 가능성도 동물실험을 통해 제기되고 있다. 대부분의 경우에 지하수 질산염의 주요 오염원은 농작물 생산량의 향상을 위해 사용하는 비료이다. 그밖에 가축의 분뇨, 산업폐기물 및 생활하수도 지역에 띠라 질산염 오염원이 될 시기는 언제인가를 결정하기 위하여 의사결정권자는 여러가지의 작물경작방법에 따라 지하수 질산오염이 어떻게 변하는지를 시계열로 예측할 필요성이 있다. 그러나 직물경작방법에 따른 지하수 질산오염을 예측하는데 필요한 토질특성, 비료의 사용량, 작물의 종류 같은 자료의 대부분은 불확실성을 내포하고 있다. 이러한 불확실성은 경제성 때문에 자료의 불충분한 조사와 인간지식의 부족으로 인해 발생한다. 본 논문에서는 불확실성을 고려하면서 작물경작방법에 따른 지하수 질산오염의 변화를 예측하는 방법을 실제적인 사례를 통해 보여준다. 그리고 자료의 불확실성을 표현하기 위해 퍼지집합이론(fuzzy set theory)은 본 논문에서 응용되었다.

  • PDF

추계학적 기법을 통한 공주지점 유출예측 연구 (Study of Stochastic Techniques for Runoff Forecasting Accuracy in Gongju basin)

  • 안정민;허영택;황만하;천근호
    • 대한토목학회논문집
    • /
    • 제31권1B호
    • /
    • pp.21-27
    • /
    • 2011
  • 유출예측량을 모의할 때 과거와 현재의 수문자료를 이용한다는 측면에서 미래 예측결과의 불확실성을 완전히 제거할 수는 없겠지만, 다양한 기법별 분석에 의하여 불확실성을 감소시킬 수 있다. 본 연구에서는 유출예측의 정확성 향상을 위해 다양한 유출예측 기법을 적용 및 평가하였으며 확률론적 예측을 가능하게 하는 예측기법인 ESP와 관측 시계열 자료를 이용한 통계기법으로 공주지점의 유출예측을 수행하였다. 각 기법에 따른 유출예측 결과의 신뢰성 평가는 MAE(Mean Absolute Error), RMSE(Root Mean Squared Error), RRMSE(Relative Root Mean Squared Error), Mean Absolute Percentage Error (MAPE), TIC(Theil Inequality Coefficient)를 이용하였다. ESP 확률을 이용하여 예측한 유출결과와 통계적 시계열 분석에 의해 예측된 유출결과를 MAE, RMSE, RRMSE, MAPE, TIC를 이용하여 비교 분석하였으며 유출예측의 개선효과를 확인해본 결과, ESP 확률을 이용한 예측이 MAE(10.6), RMSE(15.14), RRMSE(0.244), MAPE(22.74%), TIC(0.13)으로 평가되었으며 MAE(23.2), RMSE(37.13), RRMSE(0.596), MAPE(26.69%), TIC(0.30)으로 평가된 ARMA와 MAE(26.4), RMSE(34.44), RRMSE(0.563), MAPE(47.38%), TIC(0.25)으로 평가된 Winters 에 비해 신뢰성이 높게 나타났다.

입력지연을 갖는 이산시간 선형시스템을 위한 예측기 피드백 제어기의 강인성 해석 (Robustness Analysis of Predictor Feedback Controller for Discrete-Time Linear Systems with Input Delays)

  • 최준영
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1265-1272
    • /
    • 2019
  • 본 논문에서는 상수 입력지연을 갖는 이산시간 선형시스템을 위한 기존의 예측기 피드백 제어기의 구조적 모델 불확실성에 대한 강인성을 해석한다. 상수 입력지연을 1차 PdE (Partial difference Equation)로 모델링하여 입력지연을 PdE 상태변수로 대체하고 백스테핑 변환을 적용하여 목표 시스템을 구축한다. 목표 시스템을 기반으로 전체 상태변수를 포함하는 명시적 리아푸노프 함수를 구성하여 안정성이 유지되는 구조적 모델 불확실성의 최대 크기의 존재를 증명하고 예측기 피드백 제어기의 강인성을 확립한다. 모의실험을 통하여 모델 불확실성이 존재하는 경우에도 닫힌 루프 시스템의 안정성이 유지되는 것을 예증하고 예측기 피드백 제어기의 강인성을 검증한다.

Bayesian 기법을 활용한 AR Model 매개변수의 불확실성 추정 (Uncertainty Estimation of AR Model Parameters Using a Bayesian technique)

  • 박찬영;박종현;박민우;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.280-280
    • /
    • 2016
  • 특정 자료의 시간의 흐름에 따른 예측치를 추정하는 방법으로 AR Model 즉, 자기회귀모형이 많이 사용되고 있다. AR Model은 변수의 현재 값을 과거 값의 함수로 나타내게 되는데, 이런 시계열 분석 모델을 사용할 때 매개변수의 추정 과정이 필수적으로 요구된다. 일반적으로 매개변수를 추정하는 방법에는 확률적근사법(stochastic approximation), 최소제곱법(method of least square), 자기상관법(method of autocorrelation method), 최우도법(method of maximum likelihood) 등이 있다. AR Model에서 가장 많이 사용되는 최우도법은 표본크기가 충분히 클 때 가장 효율적인 방법으로 평가되지만 수치적으로 해를 구하는 과정이 복잡한 경우가 많으며, 해를 구하지 못하는 어려움이 따르기도 한다. 또한 표본 크기가 작을 때 일반적으로 잘 일치하지 않은 결과를 얻게 된다. 우리나라의 강우, 유량 등의 자료는 자료의 수가 적은 경우가 많기 때문에 최우도법을 통한 매개변수 추정 시 불확실성이 내재되어있지만 그것을 정량적으로 제시하는데 한계가 있다. 본 연구에서는 AR Model의 매개변수 추정 시 Bayesian 기법으로 매개변수의 사후분포(posterior distribution)를 제공하여 매개변수의 불확실성 구간을 정량적으로 표현하게 됨으로써, 시계열 분석을 통해 보다 신뢰성 있는 예측치를 얻을 수 있으리라 판단된다.

  • PDF

지구통계학적 시뮬레이션을 이용한 지화학 자료의 공간통합에서의 불확실성 추정

  • 박노욱;지광훈;권병두
    • 한국지구과학회:학술대회논문집
    • /
    • 한국지구과학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.213-218
    • /
    • 2006
  • 이 논문에서는 지구통계학적 시뮬레이션을 이용하여 자료 표현에서의 불확실성이 최종적인 공간통합에 미치는 영향을 정량적으로 분석하고자 하였다. 광물자원 탐사를 위한 공간통합 사례연구를 통해 시뮬레이션 결과에 따라 예측 능력의 차이가 나타남을 확인 할 수 있었으며, 결론적으로 지구통계학적 시뮬레이션이 공간 자료의 불확실성 모델링에 효율적으로 이용될 수 있을 것으로 판단된다.

  • PDF

인공신경망과 M5' model tree를 이용한 Tetrapod 피복블록의 안정수 예측 (Prediction of Stability Number for Tetrapod Armour Block Using Artificial Neural Network and M5' Model Tree)

  • 김승우;서경덕
    • 한국해안·해양공학회논문집
    • /
    • 제23권1호
    • /
    • pp.109-117
    • /
    • 2011
  • 국내 경사식 방파제의 대표적인 피복재인 Tetrapod는 대부분 경험식을 사용하여 중량을 산정한다. 경험식은 수리 실험의 결과를 곡선맞춤(curve-fitting)하여 제안되기 때문에 실험 오차에 따른 불확실성이 내포되어 있다. 이런 불확실성을 최소화하기 위해 인경신경망과 M5' model tree를 사용하여 피복재 안정수를 예측하였다. 각 모형의 불확실성의 정도는 예측된 안정수와 수리실험의 안정수 사이의 일치지수(index of agreement)를 사용하여 평가하였다. 일치지수가 가장 큰 인공신경망은 우수한 예측 능력을 가지고 있지만 일반 설계자들이 쉽게 사용할 수 없는 큰 단점이 있다. 반면에 M5' model tree는 인공신경망보다는 예측 능력이 조금 떨어지지만 기존의 경험식보다는 예측능력이 우수하고 또한 일반 설계자들이 쉽게 사용할 수 있는 공식의 형태로 주어지는 장점이 있다.

조건부 모사 기법을 이용한 암반등급의 예측 및 불확실성 평가에 관한 연구 (Estimation of Rock Mass rating(RMR) and Assessment of its Uncertainty using Conditional Simulations)

  • 홍창우;전석원;구청모
    • 터널과지하공간
    • /
    • 제16권2호
    • /
    • pp.135-145
    • /
    • 2006
  • 본 연구에서는 조건부 모사 기법 중 순차 가우시안 시뮬레이션(SGS)과 순차 지시 시뮬레이션(SIS)을 이용하여 터널설계 시 미시추구간의 암반등급(RMR)을 예측하여 보았다. 총 30개의 시추공자료 가운데 25개의 시추공자료를 이용하여 순차 가우시안 시뮬레이션과 순차 지시 시뮬레이션을 수행하였으며, 나머지 5개의 시추공에서의 실제 암반등급과 예측 암반등급을 비교하여 보았다. 그 결과 조건부 모사 기법은 암반등급의 공간적 분포특성을 비교적 잘 예측할 수 있고, 예측의 불확실성을 정량적으로 평가할 수 있는 효과적인 방법임을 확인할 수 있었다. 따라서 조건부 모사 기법의 결과는 미시추구간의 암반등급을 예측하는데 있어서 유용한 정보를 제공 해 줄 수 있을 것으로 판단된다.

강우자료의 불확실성을 고려한 강우 유출 모형의 적용 (Application of Rainfall Runoff Model with Rainfall Uncertainty)

  • 이효상;전민우;발린 다니엘라;로드 미하엘
    • 한국수자원학회논문집
    • /
    • 제42권10호
    • /
    • pp.773-783
    • /
    • 2009
  • 강우유출모형의 입력 자료로 사용되는 강우 관측 자료의 불확실성이 유량예측에 미치는 영향을 분석하기 위하여 모형변수 검정의 불확실성 연구에서 사용하는 GLUE (Generalized Likelihood Uncertainty Estimation)방법을 입력 자료 부분으로 확장하여 적용 하였다. 독일의 Weida 유역의 강우 관측 자료를 바탕으로 구조적 및 비구조적인 불확실성 부분을 각각 구조적인 오차 수정 과정과 DUE (Data Uncertainty Engine)을 통하여 강우자료를 구성하였다. 이를 유역의 수문학적 작용을 고려하기 위해 선정한 집중형 강우유출모형, PDM (Probability Distribution Model)에 MC (Monte Carlo)와 GLUE 방법을 활용하여 적용하였다. MC검정변수들의 검정 후 반응 표면(Posterior response surface)을 검토하고 GLUE 의 반응검정 모형변수(Behavioural model parameter set)를 선택, 간략한 GLUE 유량곡선들을 계산하였다. 계산된 GLUE 유량곡선들을 모두 합하여 앙상블 유량을 산정하고, 이 유량의 90 분위를 강우량자료 및 모형변수 검정의 불확실성을 고려한 신뢰구간으로 제시하였다. PDM 모형의 결과는 유량곡선의 전구간에서 안정적인 모의 능력을 보여주고 있으나, 첨두유량 부분이 적게 산정되는 문제점을 보이고 있다. 본 연구에서 상대적으로 적은 수의 강우 시나리오 및 반응검정 모형변수의 적용이라는 한계에도 불구하고, GLUE 방법을 강우관측자료의 불확실성 부분으로 확장하여 강우자료 및 변수 검정의 불확실성을 고려한 모의된 유량예측의 신뢰구간의 적용가능성을 보여주고 있다.

댐 유입량의 불확실성을 고려한 저수량의 확률론적 예측 (Probabilistic prediction of reservoir storage considering the uncertainty of dam inflow)

  • 권민성;박동혁;전경수;김태웅
    • 한국수자원학회논문집
    • /
    • 제49권7호
    • /
    • pp.607-614
    • /
    • 2016
  • 가뭄의 피해를 줄이기 위해서는 시기적절한 용수관리와 지역주민의 절수 유도가 필요하며, 이를 위해서는 가뭄의 현황 및 전망에 대한 정보가 무엇보다 중요하다. 특히 생 공용수를 공급하는 다목적댐의 경우 저수량에 대한 향후 전망은 용수관리를 위한 가장 중요한 정보이다. 이에 본 연구에서는 핵밀도함수를 활용하여 유입량의 불확실성을 고려한 확률론적 저수량 예측 모형을 구축하고, 그 적용성과 활용성을 분석하였다. 확률론적 저수량 예측 모형은 현재의 저수량을 기준으로 시간의 변화에 따른 저수량을 확률적으로 예측할 수 있다. 이를 통해 현재의 가뭄상황에서 향후 저수량의 변화 양상을 파악하여 중장기적인 대응이 가능하고 특정시점의 목표 저수량을 달성하기 위한 용수 비축량을 산정할 수 있어 용수관리에 관한 의사결정을 위한 도구로 활용이 가능할 것으로 판단된다.

Neuro-Fuzzy 기법을 이용한 홍수예측 (Flood Estimation Using Neuro-Fuzzy Technique)

  • 지정원;최창원;이재응
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.128-132
    • /
    • 2012
  • 물은 생물의 생존을 위해 필수적인 요소로 인류가 시작된 이래로 물을 효율적으로 이용하고 안전하게 관리하기 위한 노력은 계속되어 왔다. 최근 지구 온난화가 주요 원인으로 알려진 국지성 집중호우의 피해는 매우 심각하며, 이로 인해 치수에 대한 중요성은 날로 커지고 있다. 지금까지 사용해 왔던 홍수 예 경보 과정은 특정 지점의 유출량을 예측하기 위해서 강우-유출 모형을 운영하였다. 그러나 물리적 모형의 경우 운영에 필요한 매개변수의 결정과정이 복잡하고, 매개변수 결정을 위해 많은 자료를 필요로 한다. 또한 그 매개변수의 결정과정은 많은 불확실성을 포함하고 있어서 모형의 운영을 위한 전처리과정과 계산과정을 거치는 동안 발생한 오차가 누적되어 결과물 속에는 많은 오차가 포함되어 있다. 본 연구에서는 기존의 홍수 예 경보 시스템의 문제점과 불확실성을 최대한 감소시키고 더 우수한 유출량 예측을 위해 neuro-fuzzy 추론 기법을 이용한 모형인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 사용하여 하천수위를 예측하였다. ANFIS는 신경회로망과 퍼지이론을 결합한 기법으로 신경회로망의 구조와 학습 능력을 이용하여 제어환경에서 획득한 입 출력 정보로부터 언어변수의 membership 함수와 제어규칙을 제어 대상에 적합하도록 자동으로 조종하는 기법이다. 본 연구에서는 ANFIS를 사용하여 탄천 하류에 위치한 대곡교의 수위를 예측하였다. 분석을 위해 2007년부터 2011년까지의 탄천 유역의 관측 강우자료와 수위 자료 중 강우강도와 지속시간, 강우 형태에 따라 7개의 강우사상을 선정하였다. 학습자료 및 보정자료의 변화에 따른 예측 오차를 비교하여 모형의 적용성과 적정성을 평가하였다. 적용결과 입력자료 구성의 경우 해당 시간의 강우량 및 수위자료와 10분 전 강우자료를 이용한 모델이 가장 우수한 예측을 보였고, 학습자료의 경우 자료의 길이가 길고, 최대홍수량이 큰 경우 가장 우수한 예측 결과를 보였다. 본 연구의 적용결과 가장 우수한 모형의 경우 30분 예측 첨두수위 오차는 0.32%, RMSE는 0.05m 이고 예측시간이 길어짐에 따라 오차가 비선형적으로 증가하는 경향을 보였다.

  • PDF