• Title/Summary/Keyword: 예측 모형

Search Result 6,153, Processing Time 0.035 seconds

Development of integrated river flow forecast model with data assimilation (자료동화를 연계한 통합하천유량예측모형 개발)

  • Lee, Byong-Ju;Choi, Jae-Cheon;Choi, Young-Jean
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.250-250
    • /
    • 2012
  • 하천유량 예측정보는 하천홍수를 잘 관리하기 위한 중요한 정보이다. 하천유량을 예측하기 위해서는 실제 기상상황이 잘 나타내는 관측 및 예측강우정보 구축, 대상유역의 수문반응특성을 잘 모의할 수 있는 유출모형 적용, 상류에 댐이 존재할 경우 저수지추적모형의 연계모의가 필요하다. 다만, 강우정보, 유출모형, 저수지추적모형은 항상 불확실성을 포함하고 있으며 어느 하나의 정보 또는 모형이 다른 것보다 항상 정확하기는 어렵다. 이러한 조건에서 하천유량을 잘 예측하기 위한 대안은 자료동화기법의 연계적용이라 할 수 있다. 본 연구에서는 관측유량 자료동화가 가능한 SURF 모형에 AUTO ROM 저수지추적방법을 연계하여 상류에 댐이 존재하는 유역에서도 하천유량을 예측할 수 있는 통합하천유량예측모형을 개발하였다. 적용유역은 한강유역을 채택하였으며 2002~2009년에 대해 모형을 구축하였다. 자료동화효과로 인해 유출모형만을 적용한 경우보다 유출모의 정확도가 높아지는 것을 확인하였다. 또한 저수지추적과정에서도 임의시점을 기준으로 과거기간에 대해서는 관측유입량과 방류량을 적용하고 미래기간에 대해서는 저수지추적을 통해 모의되며 이 결과로부터 저수위-유입량-방류량의 관계가 합리적으로 모의됨을 확인하였다. 이상의 결과로부터 하천유량예측을 위해서는 하천유량정보와 댐수문정보의 자료동화를 수행하므로써 하천유량 예측결과의 정확도를 향상시킬 수 있을 것으로 판단된다.

  • PDF

국내금융자산의 시장위험 추정에 있어서 ARCH류 모형의 유용성 평가

  • Yu, Il-Seong
    • The Korean Journal of Financial Studies
    • /
    • v.11 no.1
    • /
    • pp.157-176
    • /
    • 2005
  • 본 연구는 KOSPI자산 포트폴리오에 대한 VaR를 다양한 ARCH류 모형을 사용하여 추정하고 이들의 예측능력을 평가하였다. 활용된 모형은 우선 기본적인 GARCH(1,1)모형과 레버리지 효과를 감안한 TGARCH모형, 다양한 ARCH모형을 포괄할 수 있는 PGARCH모형, 변동성의 영속성을 고려한 IGARCH모형이 포함되었다. 모형 상호간의 성과비교에 추가하여 ARCH류 모형에서 수익률예측오차의 분포에 따라서 VaR의 예측성과가 얼마나 차이가 발생하는가를 확인하기 위하여 정규분포와 Student-t분포의 성과를 비교하였다. 마지막으로 VaR 추정시에 조건부평균을 무시하는 관례가 어느정도 타당성이 있는지를 확인하기 위하여 1시차 자기회귀과정에 입각한 조건부 평균을 감안한 결과를 검토하였다. ARCH류 모형에서 모형 설명력은 보다 정교한 모형인 TGARCH모형이나 PGARCH모형이 우월하게 나타났지만, VaR의 예측능력 우월성으로 이어지지는 않았다. Student-t분포를 가정한 경우 VaR모형 사후검증성과는 정규분포를 가정한 경우보다 모든 신뢰수준에서 개선되었으며, 조건부평균의 제거는 Student-t분포 가정하에서는 적합하지 않은 것으로 나타났다. ARCH류 모형에서 가장 단순한 형태인 IGARCH모형의 예측성과가 다른 모형들에 비하여 뒤떨어지지 않으며, 더욱 제약된 형태인 RiskMetrics의 EWMA모형이 사후검증에서 우수한 성과를 보여 단순한 모형의 유용성을 확인시켜주고 있다.

  • PDF

Predicting Stock Prices using Book Values and Earnings-per-Share Based on Linear Regression Model and Neural Network Model (장부가치와 주당 이익을 이용한 선형회귀모형과 신경망모형의 주가예측)

  • Choi, Sung-Sub;Koo, Hyeng-Keun;Kim, Young-Kwon
    • The Korean Journal of Financial Management
    • /
    • v.17 no.1
    • /
    • pp.161-180
    • /
    • 2000
  • 본 연구는 주가를 예측하는데 있어서 선형 회귀모형을 이용하는 방법과 비선형 인공신경망 모형을 이용하는 방법을 비교 분석하여, 어떤 모형이 더 우수한 예측성과를 내는지를 검증한다. 자본시장에서 투자자들은 접근하는 정보가 다르고 각기 상이한 예측 변수들을 토대로 나름대로의 예측치를 만들어 낸다. 이렇게 볼 때 개별 투자자들이 이용하는 다양한 정보집합을 결합하여 단일의 뛰어난 정보집합을 만들어내는 것은 매우 어려운 과제이다. 따라서 본 연구에서는 이용 가능한 소수의 예측 변수들을 어떤 방식으로 결합하는 것이 예측오차의 분산을 최소화할 수 있는지에 대한 현실적인 접근방법을 모색하고자 한다. 거시경제변수나 시장자료를 입력변수로 사용한 기존 연구와는 달리 본 연구에서는 재무제표 정보를 입력변수로 사용하였다 즉, 대차대조표의 최종요약치인 주당 지분의 장부가치와 손익계산서의 최종요약치인 주당 순이익을 입력변수로 사용했으며 1991년부터 1995년까지의 추정(학습)결과를 토대로 모형을 선택하여 1996년의 제무제표 정보로 1997년의 주가를 예측하는 것이 본 연구의 과제이다. 연구결과, 대체로 선형회귀모형에 비해 비선형 신경망 모형이 예측오차의 분산을 감소시키는 것으로 나타났다.

  • PDF

Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models (인공신경망을 이용한 항공기 기내식 수요예측의 예측력 개선 방안에 관한 연구)

  • Lee, Young-Chan;Seo, Chang-Gab
    • The Journal of Information Systems
    • /
    • v.10 no.2
    • /
    • pp.151-164
    • /
    • 2001
  • 현재의 항공사 기내식 수요예측 시스템으로는 항공기 운항의 지연이나 초과 주문으로 인한 손실 문제를 해결하기 힘든 것으로 알려져 있다. 이러한 문제를 해결하기 위해 본 연구에서는 항공기 기내식 시계열 자료만을 입력변수로 사용한 단순인공신경망모형(simple neural network model), 단순인공신경망모형에 전통적인 시계열 기법(본 연구에서는 지수 평활법)의 예측 결과를 입력변수로 추가한 혼합인공신경망모형(hybrid neural network model), 그리고 혼합인공신경 망 모형에 상관관계가 높은 다른 시계열 자료(본 논문에서는 유사 노선의 다른 항공기 기내식 시계열 자료)를 인공신경망의 입력변수로 추가시킨 하이퍼혼합인공신경망모형(hyper hybrid neural network model)을 새로운 항공기 기내식 수요예측 기법으로 제안하고, 이들 모형의 예측력을 비교 분석하였다. 분석 결과 하이퍼혼합인공신경망 모형의 예측력이 가장 우수한 것으로 나타나, 인공신경 망을 기반으로 한 수요예측에 있어 상관관계가 높은 다른 시계열 자료를 입력변수로 추가함으로써 인공신경망모형의 예측력을 개선시킬 수 있음을 알 수 있었다

  • PDF

비금융 상장기업의 부실예측모형

  • Jang, Hwi-Yong
    • The Korean Journal of Financial Management
    • /
    • v.15 no.1
    • /
    • pp.299-327
    • /
    • 1998
  • 기업부실예측모형은 관련당사자들에게 부실위험을 사전에 경고함으로써 기업이 실제 부실화되는 경우 발생할 막대한 사회적 비용을 절감시켜 줄 수 있지만 지금까지 개발된 모형의 예측력은 그다지 만족스럽지 못하였다. 본 연구에서는 먼저 기존 부실예측연구의 한계 및 문제점들을 살펴보고, 철저한 실증분석에 근거하여 모형의 예측력 극대화에 실제적으로 기여하는 변수만을 선정함으로써 보다 높은 예측력을 가진 부실예측모형 개발을 시도하였다. 비금융 상장회사에 적용할 목적으로 개발된 본 모형의 자체예측력은 부실기업표본의 경우 85.3%, 비부실표본의 경우 95.1%으로써 기존의 모형들에 비하여 크게 향상되었고, 검정용표본을 이용한 예측력의 경우에도 부실표본 76.5%, 비부실표본 94.2%로서 대폭 개선되었다. 본 모형은 대출심사시 뿐만 아니라 기관투자가들이 주식 및 채권투자를 위한 기업분석에도 매우 유용하게 활용될 수 있고 특히 적격업체의 1차적 판별에 매우 유용할 것으로 예상된다.

  • PDF

The Study on Development of System for Web-Based Water Quality Forecasting (Web기반 수질예측 시스템 개발에 관한 연구)

  • Ahn, Sang Jin;Jun, Kye Won;Ryu, Byong Ro;Han, Yang Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1408-1412
    • /
    • 2004
  • 인구의 폭발적 증가, 산업화, 도시화의 급진적, 과학기숙의 발달 등으로 물 소비는 급증하는 반면, 이상기후현상으로 수자원의 절대량이 줄어 수자원의 양적인 문제와 하천 및 저수지의 수질오염에 대한 질적인 문제가 ,대두되고 있다. 하천의 수질현상 및 이송은 상당히 비선형적이고, 시간에 따라 변화하려, 실제로 수질의 예측은 유량의 변동, 오염물질의 이송 및 확산, 하천 구조물 등의 여러 요인에 의하여 상당히 어렵다고 알려져 왔다. 또한 한정된 수자원으로 하천의 수량과 수질목표를 동시에 달성하기 위해서는 물의 수요와 공급을 실시간으로 감시하면서 기상과 유출예측기술을 활용하여 용수의 수요와 공급을 예측하고 이를 토대로 수량과 수질을 고려한 물관리 운영시스템이 구축되어야 한다. 이를 위해 본 연구에서는 모형의 입${\cdot}$출력 구성을 자유롭게 변형할 수 있는 상태공간 모형과 신경망 모형을 이용하여 금강수계 주요 지점의 수질예측 모형을 구성하고 모형의 적용성을 파악한 후 예측력이 우수한 모형을 Web기반 모형의 수질예측 모듈의 기본모형으로 선정하고 Web 상에서 수질예측이 가능하도록 시스템을 개발하였다.

  • PDF

Prediction for Time Series Panel Data using Neural Network (신경망을 이용한 시계열 패널자료의 예측)

  • Kim, In-Kyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.263-264
    • /
    • 2012
  • 본 논문은 여러 개의 독립적인 시계열로 구성된 시계열 패널 자료를 이용하여 비선형 모형인 GRCA모형과 신경망을 이용하여 예측값을 구하여 서로 비교 분석하고자 한다. 먼저 GRCA모형에 대하여 연구하고 신경망의 구조와 예측값을 구하기 위한 여러 가지 변환함수를 유도한다. 단기 예측에서는 신경망 방법의 예측값이 더 좋았고, 장기예측에서는 비선형모형을 이용한 예측값이 더 좋은 것으로 나타났다.

  • PDF

The study of Estimation model for the short-term travel time prediction (단기 통행시간예측 모형 개발에 관한 연구)

  • LEE Seung-jae;KIM Beom-il;Kwon Hyug
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.31-44
    • /
    • 2004
  • The study of Estimation model for the short-term travel time prediction. There is a different solution which has predicted the link travel time to solve this problem. By using this solution, the link travel time is predicted based on link conditions from time to time. The predicated link travel time is used to search the shortest path. Before providing a dynamic shortest path finding, the prediction model should be verified. To verify the prediction model, three models such as Kalman filtering, Stochastic Process, ARIMA. The ARIMA model should adjust optimal parameters according to the traffic conditions. It requires a frequent adjustment process of finding optimal parameters. As a result of these characteristics, It is difficult to use the ARIMA model as a prediction. Kalman Filtering model has a distinguished prediction capability. It is due to the modification of travel time predictive errors in the gaining matrix. As a result of these characteristics, the Kalman Filtering model is likely to have a non-accumulative errors in prediction. Stochastic Process model uses the historical patterns of travel time conditions on links. It if favorably comparable with the other models in the sense of the recurrent travel time condition prediction. As a result, for the travel time estimation, Kalman filtering model is the better estimation model for the short-term estimation, stochastic process is the better for the long-term estimation.

  • PDF

Forecasting the Daily Container Volumes Using Data Mining with CART Approach (Datamining 기법을 활용한 단기 항만 물동량 예측)

  • Ha, Jun-Su;Lim, Chae Hwan;Cho, Kwang-Hee;Ha, Hun-Koo
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.3
    • /
    • pp.1-17
    • /
    • 2021
  • Forecasting the daily volume of container is important in many aspects of port operation. In this article, we utilized a machine-learning algorithm based on decision tree to predict future container throughput of Busan port. Accurate volume forecasting improves operational efficiency and service levels by reducing costs and shipowner latency. We showed that our method is capable of accurately and reliably predicting container throughput in short-term(days). Forecasting accuracy was improved by more than 22% over time series methods(ARIMA). We also demonstrated that the current method is assumption-free and not prone to human bias. We expect that such method could be useful in a broad range of fields.

Hydrologic Variable Prediction Using Nonlinear Ensemble Model (비선형 앙상블 모형을 이용한 수문량 예측)

  • Kwon, Hyun-Han;Kim, Min-Ji;Kim, Jang-Kyung;Na, Bong-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.359-359
    • /
    • 2011
  • 기존 수자원계획에 있어서 수문량 예측은 매우 제한적으로 활용되고 있는 실정으로서 최근 기후변화 및 이상기후로 기인하는 기상학적 불확실성 증가에 대해서 효과적으로 대응 하기가 어렵다. 본 연구에서는 기상인자를 활용한 수문변량 예측기법을 개발하고자 하며 국내에 수문자료가 충분한 지역에 대해서 모형의 적합성과 타당성을 평가하고자 한다. 대부분의 수문변량은 해수면온도, 해수면기압, 바람장 등 Large Scale의 기상학적 특성과 연관성을 가지고 있으며 선행시간을 가지고 수문순환에 영향을 주고 있다. 수문변량과 기상학적 변량사이에는 일반적으로 비선형 관계를 가지고 있는 것으로 알려지고 있으며 이러한 비선형 관계를 효과적으로 예측하기 위해서 본 연구에서는 비선형 예측모형을 개발 하고자 한다. 최근 비선형 예측모형에서 불확실성을 고려한 모형에 대한 연구가 활발히 진행되고 있으며 특히, 다중 모형을 사용한 Ensemble 개념의 예측모형 도입이 이루어지고 있다. 본 연구에서는 국내 다목적댐 유입량 및 강수량에 대해서 최적 기상변량을 도출하고 이를 활용한 비선형 Ensemble 예측모형을 개발하였다. 일반적인 선형 회귀분석 모형에 비해 기상현상과 수문현상에 비선형성을 효과적으로 재현할 수 있는 장점을 확인할 수 있었으며 이와 더불어 예측결과에 대한 불확실성을 제공함으로서 신뢰성 있는 수자원 계획을 위한 기초자료로서 활용이 가능할 것으로 판단된다.

  • PDF