• Title/Summary/Keyword: 예측 기법

Search Result 6,895, Processing Time 0.035 seconds

Development of a Rainfall Forecast Model Using Wide Range Multi-Sensor Data (광역 다중센서 자료를 사용한 강우예측기법 개선에 관한 연구)

  • Kim, Gwang-Seob;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.123-126
    • /
    • 2005
  • 본 연구에서는 상층기상자료, 자동 기상 관측망 자료 및 신경망기법을 사용하여 단시간 강우 예측 모형을 개발하였다. 호우를 동반한 이송 기상 시스템의 이동 경로가 라디오존데로부터 획득할 수 있는 상층기상 자료 즉 상층 풍향자료와 동일한 방향으로 이동한다는 가정 하에 원거리에서 발생하는 기상현상의 발달과정을 판단 할 수 있는 알고리즘을 개발하고, 이러한 원거리 입력 자료와 예측하고자 하는 값 사이의 비선형 상관 관계를 연결하는 기법으로 인공 신경망 기법을 도입하였다. 개발된 모형을 2002년 태풍 루사로 인하여 큰 피해를 입은 감천지역에 적용하였다. 포항과 오산의 라디오존데에서 획득한 700mb에서의 풍향자료와 5년의 자료기간을 가지는 350개의 자동 기상 관측망 자료를 입력 자료로 사용하였으며 결과는 상층기상자료를 사용하지 않고 예측한 결과에 대하여 개선된 강우 예측결과를 보여주었다.

  • PDF

Waterborne Noise Prediction of the Reinforced Cylinderical Shell Using the SEA Technique (SEA 기법을 이용한 보강 원통형 셀의 수중방사소음 해석)

  • 배수룡;전재진;이헌곤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.107-112
    • /
    • 1992
  • 선박 내부에 탑재된 추진 기계류에서 발생되는 진동은 마운트 Deck을 통하 여 선체에 전달되어 수중으로 전파된다. 기계류에 의해 발생되는 수중방사소 음을 감소시키기 위해서는 선체로 전달된 진동수준 및 수중방사소음 예측이 우선 중요하다. 수중방사소음 예측 방법으로 FEM과 BEM에 의한 저주파수 대역 예측, 전달함수에 의한 실험적 예측, SEA(Statistical Energy Analysis) 기법을 이용한 고주파수 대역 예측으로 나눌 수 있다. R.H.Lyon 등에 의해 발전된 SEA 기법은 항공기, 선박등 복잡한 구조물의 고주파수 대역 진동해 석에 널리 이용되고 있다. SEA 기법의 선박에 대한 적용은 소형선박의 기계 류에서 발생되는 진동에 의한 선체 진동수준 및 수중방사소음 해석 등에 적 용되고 있다. 본 연구에서는 보강 원통형 셀 모델에 대한 수중방사소음을 SEA 기법을 이용하여 예측하고 실험을 통하여 검증하였다.

  • PDF

Inter-Intra Motion Estimation in Wavelet based Codec (웨이블릿 코덱에서의 Inter-Intra 움직임 예측 기법)

  • 이주경;김충길;강정구;정기동
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.187-189
    • /
    • 2003
  • 웨이블릿 변환에 기반한 동영상 코덱에서의 움직임 예측 기법은 OCT 기반 코덱과 유사하게 이전 프레임과의 움직임 예측을 통하여 수행된다. 그러나, 현재 프레임이 이전 프레임을 참조하므로 네트워크상의 전송시 이전 프레임에 발생한 오류가 전달되는 오류 전파의 문제도 발생하게 된다. 본 논문에서는 웨이블릿 변환된 프레임의 특성을 이용하여 최상위 레벨의 LL 부대역만 이전 프레임과의 움직임 예측을 수행하고, 나머지 부대역에 대하여 프레임 내의 상위레벨의 부대역이 하위 부대역을 창조하여 예측 및 보상을 수행하여 오류전파의 가능성을 최소화하는 Inter-Intra ME 동영상 코덱을 제안한다 제안된 움직임 예측을 사용하여 MAD(Mean-Absolute Differences)를 측정한 결과, 프레임간 변화가 심한 경우에는 제안된 기법과 이전 프레임의 부대역을 참조한 기법 사이의 압축율은 유사하게 나타났으며, 변화가 적은 경우에는 이전 프레임을 참조하는 것의 압축율이 높게 나타났다. 그러나, 네트워크 전송시 발생하는 오류전파에는 제안된 기법의 성능이 우수한 것으로 나타났다.

  • PDF

Fast Intra-Prediction Mode Decision Algorithm using Predetermined Prediction Block Size in H.264/AVC (H.264/AVC의 인트라 예측에서 예측 블록 크기 정보를 이용한 빠른 예측 모드 결정 기법)

  • Kim, Young-ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.211-214
    • /
    • 2009
  • H.264/AVC의 인트라 예측에서 미리 현재 블록 내의 정보 및 이전 블록의 예측 모드 정보 등을 이용하여 현재 블록의 예측 부호화 블록 크기가 결정되었을 경우, 예측된 블록 크기에 적합한 예측 모드 결정이 요구된다. 이에 사전에 결정된 예측 블록 크기 정보와 주변 블록과의 화소 변화량을 계산하여 예측 모드를 결정하는 기법을 제안하고 성능을 평가한다.

  • PDF

데이터 마이닝 기법을 이용한 직무교육 성취집단 예측모형 개발

  • Gwak, Gi-Hyo;Seo, Yong-Mu
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.318-323
    • /
    • 2007
  • 국방부에서 발표한 ‘국방개혁에 관한 법률’ 에 따라 2014년까지 현역병들에 대한 복무기간이 단계적으로 단축될 예정이다. 이에 따라 좀 더 효율적인 직무교육 방안이 필요하게 되어, ‘차등제 교육’을 시행하고 있다. 이 교육의 효과를 향상시키기 위해서는 훈련병들의 예상 학업 성취도를 미리 정확하게 예측하는 것이 필수적이다. 따라서, 본 연구에서는 입교 초기에 얻을 수 있는 신병들의 제한된 자료들을 이용하여 교육 성취도 예측 모형을 개발하였다. 본 모형의 목적 변수는 ‘일반관리 인원’, ‘집중관리 인원’의 값을 갖는 이진형 성취집단 변수이며, 사용된 기법은 k-means 군집기볍과 Decision Tree 기법을 혼합한 모형, k-means 군집기법과 Neural Network 기법을 혼합한 모형, Decision Tree 모형, Neural Network 모형, Bayesian 모형, 그리고 Logistic 모형 등을 사용하였다. 그 결과 k-means 군집기법과 Decision Tree를 혼합한 모형이 가장 좋은 예측력올 보이는 것으로 나타났다. 이러한 교육 성취집단 예측 모형은 향후 군에서 이루어지는 다양한 교육 프로그램에 적극적으로 이용될 수 있을 것으로 기대된다.

  • PDF

A Study on Link Speed Forecasting using Kalman Filtering Algorithm (칼만필터링을 이용한 구간 속도 예측에 관한 연구)

  • 이영인
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.21-30
    • /
    • 1998
  • 본 연구는 기존 구간 속도 예측기법의 고찰을 통하여 검지기에서 올라오는 교통제어변수를 이용하여 구간 속도 예측모형을 연구하는데 목적이 있다. 이를 위한 교통 제어변수로는 연속류 제어에서 통상적으로 사용되는 교통량, 점유율, 밀도, 속도 등을 사용한다. 공간적 범위로는 서울 올림픽대로의 17개의 영상 검지기 중 #3과 #16검지기에서 올라오는 속도, 점유율, 교통량 자료를 토대로 1998년 6월 11일 오전 7시부터 11시까지의 4시간동안 예측을 실시하며 Historical Traffic Pattern과 시험차량, 자동차 번호판 조사를 통한 구간 실측조사 자료를 토대로 예측을 위한 자료를 구축한다. 기존의 예측기법인 시계열 분석, 신경망 이론, 평활법과 칼만필터링을 고찰하였고, 가장 좋은 예측력을 보여주는 기법은 칼만필터링 모형이었다. 이를 토대로 Case Study를 통해 여러 구간의 다주기 예측을 통해 단기간(short-term)의 구간 속도를 예측하고 각 해당 검지기별 실측자료를 통해 비교분석을 실시하였다. 결과적으로 도출된 칼만필터링 모형의 다주기 예측을 통한 구간 통행속도의 예측이 기존의 구간 통행속도 산출 방법보다 더 나은 예측력을 보여주고 있다.

  • PDF

Direction-Embedded Branch Prediction based on the Analysis of Neural Network (신경망의 분석을 통한 방향 정보를 내포하는 분기 예측 기법)

  • Kwak Jong Wook;Kim Ju-Hwan;Jhon Chu Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.9-26
    • /
    • 2005
  • In the pursuit of ever higher levels of performance, recent computer systems have made use of deep pipeline, dynamic scheduling and multi-issue superscalar processor technologies. In this situations, branch prediction schemes are an essential part of modem microarchitectures because the penalty for a branch misprediction increases as pipelines deepen and the number of instructions issued per cycle increases. In this paper, we propose a novel branch prediction scheme, direction-gshare(d-gshare), to improve the prediction accuracy. At first, we model a neural network with the components that possibly affect the branch prediction accuracy, and analyze the variation of their weights based on the neural network information. Then, we newly add the component that has a high weight value to an original gshare scheme. We simulate our branch prediction scheme using Simple Scalar, a powerful event-driven simulator, and analyze the simulation results. Our results show that, compared to bimodal, two-level adaptive and gshare predictor, direction-gshare predictor(d-gshare. 3) outperforms, without additional hardware costs, by up to 4.1% and 1.5% in average for the default mont of embedded direction, and 11.8% in maximum and 3.7% in average for the optimal one.

A Combined Forecast Scheme of User-Based and Item-based Collaborative Filtering Using Neighborhood Size (이웃크기를 이용한 사용자기반과 아이템기반 협업여과의 결합예측 기법)

  • Choi, In-Bok;Lee, Jae-Dong
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.55-62
    • /
    • 2009
  • Collaborative filtering is a popular technique that recommends items based on the opinions of other people in recommender systems. Memory-based collaborative filtering which uses user database can be divided in user-based approaches and item-based approaches. User-based collaborative filtering predicts a user's preference of an item using the preferences of similar neighborhood, while item-based collaborative filtering predicts the preference of an item based on the similarity of items. This paper proposes a combined forecast scheme that predicts the preference of a user to an item by combining user-based prediction and item-based prediction using the ratio of the number of similar users and the number of similar items. Experimental results using MovieLens data set and the BookCrossing data set show that the proposed scheme improves the accuracy of prediction for movies and books compared with the user-based scheme and item-based scheme.

Time Series Forecasting Based on Modified Ensemble Algorithm (시계열 예측의 변형된 ENSEMBLE ALGORITHM)

  • Kim Yon Hyong;Kim Jae Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.137-146
    • /
    • 2005
  • Neural network is one of the most notable technique. It usually provides more powerful forecasting models than the traditional time series techniques. Employing the Ensemble technique in forecasting model, one should provide a initial distribution. Usually the uniform distribution is assumed so that the initialization is noninformative. However, it would be expected a sequential informative initialization based on data rather than the uniform initialization gives further reduction in forecasting error. In this note, a modified Ensemble algorithm using sequential initial probability is developed. The sequential distribution is designed to have much weight on the recent data.

Development and Evaluation of Flood Prediction Models Using Artificial Intelligence Techniques (인공지능 기법을 활용한 홍수예측모델 개발 및 평가 - 한강수계 댐을 중심으로 -)

  • Cho, Hemie;Uranchimeg, Sumiya;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.131-131
    • /
    • 2022
  • 기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.

  • PDF