본 연구에서는 기업인수 합병공시 전후에 관찰되는 매수 매도가격차이중에서 정보비용부분의 움직임을 살펴봄으로써 정보비대칭하의 시장미시구조이론을 검증하였다. 공시일을 예측할 수 없는 기업인수 합병공시를 대상으로 함으로써 효율적시장가설의 검증을 병행하는데 본 연구의 의의가 있다. 검증의 결과는 시장미시구조이론과 효율적시장가설을 지지한다. 공시전 전체기간에 대한 분석에서는 스프레드의 증가가 없었으나 부분기간에 대한 분석에서 스페셜리스트가 스프레드를 증가시키는 것을 확인하였다. 스프레드의 증가는 공시 3일전과 4일전에 나타났으며 이는 정보거래자에 대한 손실을 피하기 위하여 스프레드를 증가시킨다는 이론의 예측과 일치하는 증거이다. 그러나 정보누출과 이의 감지에는 시간차이가 존재하였다. 우호적공개매수와 적대적공개매수의 비교분석에서도 기업인수의 실현여부와 관련된 정보비대칭 현상에 대해 이론의 예측과 일치하는 결과를 얻었다.
홍수기간중에는 강우, 유출, 저수지 및 하류 수위등의 수시로 변하는 자료들을 on-line system으로 읽어서 실시간으로 저수지를 운영하므로써 현상태에서의 최선의 방류량을 결정하는 것이 가장 바람직하며, 이를 위한 선행조건으로 정확한 강우및 유출예측모형과 하류의 홍수추적모형이 연계 된다면 저수지의 홍수조절 용량을 최대한 활용하여 최적의 방류량을 결정할 수 있다. 본 연구에서는 홍수기중 실시간 저수지 운영을 위해 여러가지 제약조건을 고려한 모델을 개발하여, 단일 저수지인 대청 다목적 댐을 대상으로 적용하였다. 예측 유입량 대신에 재현기간별 홍수수문곡선과 실제의 저수지 유입량을 이용했으며, 하류의 홍수추적 모형은 일정한 유량을 방류하는 것이 가장 안전하다고 가정하여 최대 방류량을 변화시키므로써 하도 추적모형을 대신 하였다. 본 모델은 별도의 강우 유출예측모형과 하도의 홍수추적모형과 더불어 종합적인 실시간 저수지 운영모델이 된다.
청와대 국민 청원 게시판은 중복되는 국민 청원글과 20만 이상의 동의를 받았지만 관리자의 검토로 인해 답변이 지연되는 청원글들이 존재한다. 이는 중복 청원으로 인해 청원 동의 인원이 분산되고 답변이 지연되는 문제로 인해 국민들의 불만을 일으킨다. 따라서, 유사한 청원글을 분류하고 동일한 청원 참여 기간 내 유사한 청원글 수를 기반으로 20만 명 이상의 동의를 받을 청원 예측 모델을 구축하였다. 본문 내용만을 LSTM 모델에 적용했을 때 68%의 정확도, 20만 명 이상의 동의를 받은 청원 글에 대해서는 Precision 60%, F1-score 60%이었으나 청원 동의 가능 기간 내 유사한 글의 개수, 본문 길이, 제목의 길이를 추가하였을 때 모델은 74%의 정확도와 20만 명 이상의 동의를 받은 청원 글에 대해 74%의 Precision, 70%의 F1-score로 본문 내용만으로 학습한 모델보다 예측력이 더 높았다.
해군에서 운용하는 각 함정은 여러 가지 무기체계를 동시에 탑재하고 있는, 고가의 복합무기체계이다. 주어진 기간동안 효과적인 정비를 수행함으로써, 가동률을 극대화하는 것이말로 복합무기체계인 함정을 효과적으로 운용하는 방법이며, 경제적인 국방운용이라 부를 수 있을 것이다. 정비인시는 여러 무기체계가 동시에 탑재된 복합무기체계 정비의 핵심이다. 정비인시를 정확하게 알고 있어야만, 제한된 정비기간을 각 무기체계에 정확히 할당할 수 있을 것이며, 최적의 요소에 대한 정비가 수행될 수 있을 것이다. 본 연구에서는 해군에서 운용중인 특정장비에 대한 약 10년간의 정비자료를 이용하여 정비인시를 예측하는 모델을 제안하였다. 모델의 성능은 R2 Score를 통해 0.69의 준수한 수치를 보였다. 이 모델을 통해 조금더 세밀하고, 정확한 정비인시 예측과 정비계획 수립이 가능하리라 판단하였다.
많은 경제 시계열 자료 중에서 주가는 국내외 경제상황은 물론 정부정책 등 시장 외적인 영향에 가장 민감하게 반응한다. 하지만, 지금까지의 주가예측에 있어서는 이러한 외부의 영향, 즉 개입(Intervention)이 발생했을 때 주가의 변동에 능동적으로 대처하는 모형이 부재하였다. 실제로 이러한 개입사실을 예측모형에 반영하지 않는다면, 주가예측 있어 그 예측력을 따진다는 것은 무의미하다고 판단된다. 따라서, 개입시점을 발견하고, 이 개입효과를 측정하여 이를 모형에 반영한다면 좋은 예측결과를 얻을 수 있을 것이다. 이 연구에서는 이상점 탐지절차를 이용하여 개입 시점을 발견하고 개입의 효과가 개입시점에만 영향을 주는 모형과 효과가 일정기간 지속되는 모형으로 두 개의 개입시계열모형을 구축하고, 이러한 두 모형의 예측성과와 인공신경망모형을 이용한 예측성과를 비교하였다. 초단기예측(개입 직후 예측)에 있어서 개입의 효과가 지속되는 경우에는 개입시계열이 인공신경망보다 좋을 결과 를 나타내긴 했지만 그 차이는 크지 않았으며, 개입의 효과가 시점에만 영향을 준 경우에는 인공신경망의 결과가 더 우수한 것으로 나타났다. 단기예측(개입 후 20 일후의 예측)에 있어서는 개입 효과의 지속여부에 상관없이 인공신경망이 개입시계열모형보다 우수한 것으로 나타났다.
유역의 하천관리 및 홍수관리를 위하여 강우량을 정확하게 예측하고자 많은 수문학자들에 의해 강우량을 예측하는 연구를 진행하였다. 강우를 예측하기 위한 여러 가지 방법 중 인공신경망을 이용하여 강우를 예측하는 선행연구들을 살펴볼 수 있었다. 그러나 기존에 강우량을 예측하는 사례들을 살펴보게 되면, 강우사상이 발생된 후 강우량 예측은 비교적 높은 정확도를 가지고 있으나, 강우가 발생하기 시작하는 시점에 대한 강우량 예측은 그 정확성이 떨어지는 것을 확인할 수 있었다. 이에 본 연구에서는 무강우 기간에도 보다 정확하게 강우량을 예측할 수 있는 인공신경망 모델을 제안하고자 한다. 이를 위해 강우량 이외에도 기온, 풍속, 습도, 증기압, 전운량을 인공신경망의 입력자료로 활용하고자 하였다. 입력자료을 구성을 여러 가지 CASE로 구분하여 부산지점의 강우량을 예측하고 그 정확성을 평가하고자 하였다. 이 때, 사용되는 자료는 기상청 부산지점에서 제공하고 있는 1시간 간격자료를 적용하였다. 본 연구를 통해 개발된 인공신경망 모형을 이용하여 예측된 강우량은 부산 내에 위치한 하천관리 뿐 만 아니라 하천의 홍수 예 경보에 필요한 기초적인 자료로 활용될 수 있을 것으로 판단된다.
최근 고급 예측모형 연구에 웹 검색 정보가 활용되고 있다. 세계 웹 검색시장에서 구글이 절대적 우위를 점하고 있지만, 국내 웹 검색시장에서는 네이버가 절대적 우위를 보이고 있다. 이러한 특성을 토대로 본 연구는 예측모형을 활용하여 구글과 네이버의 한국어 검색 정보에 대한 유용성을 비교해 보고자 한다. 이를 위해 ARIMA 모형을 활용하여 세 가지의 한국 청년실업률 예측 시계열 모형을 개발하였다. 모형1은 한국 청년실업률 데이터만 사용하였으며, 모형2와 3은 모형1에 네이버와 구글의 검색어 정보를 각각 추가하였다. 모형 훈련기간에서는 모형1보다 모형2와 3이 더 우수한 예측력을 보였다. 모형2와 3은 서로 다른 검색어 정보와 상관관계를 보였으며, 예측기간 1과 2에서 모형3이 가장 좋은 성능을 보였다. 예측기간 2에서는 모형 3만 유의미한 예측결과를 나타내었다. 이 비교 연구는 네이버와 구글 검색엔진을 이용한 한국어 웹 검색 정보의 유용성을 이해하는 데 도움을 준다.
한반도 및 동아시아의 여름철은 장마와 태풍으로 인한 집중호우의 발생으로 많은 피해를 입는다. 따라서 여름철에 나타나는 이러한 집중호우가 나타나는 지역, 시기, 기간, 그리고 강수량 등을 예측하는 것은 매우 중요하다. 특히, 효율적인 수자원 관리를 위하여 이러한 예측은 매우 중요한데, 단기적으로 정확하고 신속하게 강수를 예측하는 것도 중요하지만, 장기적으로 계절 강수, 특히 여름철의 장마 또는 우기의 시기와 강수량과 태풍 발생의 시기 등을 미리 예측하여 이에 따른 집중 호우의 발생 지역, 기간, 강수량을 예측하여 사전에 대비하는 것도 매우 중요하다. 특히, 최근에는 6,7월 장마에 의한 집중 호우의 영향보다도 8월에 강수량이 높아지고 있는 경향을 보이므로 강수량의 장기적 경향의 파악이 매우 중요하다. 장기 기후를 예측하는 데는 과거 자료를 이용한 통계 방법도 유용하지만 최근에는 AOGCM (Atmospheric Oceanic General Circulation Model)을 이용한 연구가 활발하게 이루어지고 있다. 하지만 강수와 같이 지역적으로 나타나는 현상은 저해상도의 AOGCM으로는 유용한 정보를 제공하기가 어려움이 따른다. 따라서 본 연구에서는 전구를 삼각형으로 된 20면체로 격자화 시켜 모든 격자의 크기가 거의 동일하고, 해상도 조절이 가능한 Geodesic 격자를 활용한 GME 모델을 사용하였다. GME 모델은 icosahedral-hexagonal grid 격자 체계를 가진 독일 기상청(Deutscher Wetterdient)에서 현업으로 사용 중인 모델이다. 본 연구에서는 수직/수평 해상도를 40km/40layers로 하여 GME 모델을 수행하였으며, 일간격의 장기 기후 자료를 생산하였다. 사용된 초기자료로는 ECMWF (European Centre for Medium Range Weather Forecasts) 자료이며, 경계 자료로는 ERA Climatology의 최근 30년간의 SST (Sea Surface Temperature) 평균 자료를 이용하여 규준 실험(Control Run), 즉, climatology 자료를 생산하였으며, persistent SST 아노말리와 ERA Climatology의 최근 30년간의 SST 자료를 이용하여 내삽 과정을 거친 SST forcing을 주어서 예측 실험(Prediction Run)을 통하여 모의 자료를 생산하였다. 특히, 규준 실험에서는 수치 모델이 가지는 불확실성을 줄이고 예보 정확도를 향상시키기 위하여 각각의 실험은 초기자료를 달리한 앙상블 모의실험을 수행하였다. 장기 모의 3개월을 위하여 모의 기간 1달 전부터 모의를 수행하여, 첫 1달은 모델의 spin-up 시간으로 분석에서 제외 하였다. 생산된 Climatology 자료와 Prediction 자료를 비교하여 아노말리와 Category 분석을 실시하여 한반도 및 동아시아 지역의 강수(Precipitation)를 중심으로 기압장(Pressure), 온도(2m Temperature) 위주로 분석하였다. 이러한 예측된 매 계절의 전망 자료 중에서도 수자원 분야에서 관심이 집중되는 여름철에 초점을 맞추어 실제 관측 자료와 비교하여 GME 모델의 계절 모의 예측성 성능을 분석하여 평가하고 다가올 여름철의 강수량의 장기 변화를 모의하고자 하였다.
본 연구에서는 한강유역 내 관측기간이 충분한 기상청 지상관측소 10개소를 선정하고 CCCma(Canadian Century for Climate modeling and analysis)에서 제공하는 자료에 대한 인공신경망기법 상세화 적용을 실시하였다. 인공신경망의 학습을 위해 CGCM3.1/T63 20C3M시나리오(reference scenario)의 22개 2D변수 중 물리적으로 민감도가 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 선정하였으며 인공신경망 학습기간은 1991년~1995년, 검증기간은 1996년~2000년, 예측기간은 2011년~2100년으로 A1B, A2 B1 시나리오 등 다양한 기후변화 시나리오를 통해 예측band를 제시하고자 하였다. 하지만 공간상관을 고려하기 위하여 각 관측소에 대하여 인공신경망 학습을 하는 경우 관측소간 spatial correlation 및 spatial cluster구현이 어렵기 때문에 Spatial Rectangular Pulse모형을 이용하고자 하였으나, 강수면적에 대한 scale의 결정이 어렵다는 단점을 확인 하고 본 연구에서는 Random Cascade 모형을 이용하여 ${\beta}$를 통한 강수면적 scale(rainy area fraction)을 결정하고자 하였다. Random Cascade모형의 기법은 격자단위의 downscaling기법으로 강수대의 공간적 형상을 재현하며 스케일에 비종속적인(scale-invariant)프랙탈 특성을 이용하여 매개변수를 최소화 할 수 있는 장점을 가진 기법으로 한강유역 1Km내외 강우장을 만들어 topographic effect를 첨가하고자 한다.
하천 유역의 수자원관리에 있어서 홍수 및 가뭄 기간에 유출의 규모와 빈도와 같은 유출특성을 신뢰할 수 있도록 예측하는 것은 매우 중요하다. 수문모형은 이러한 유역의 신뢰성 있는 유출량 예측을 위해 이용되며, 수문모형의 결과물은 수문순환 과정의 공간적 표출이나 매개변수 추정방법 등 다양한 요인에 매우 민감하게 반영된다. 대부분의 수문모형 매개변수들은 해당 유역의 특성이나, 홍수 및 가뭄과 같은 극단적 유출상황에 따라 설정되어 있지 못한 실정이며, 이는 모형의 신뢰성 있는 보정 및 유출량 모의를 보다 정밀하게 수행하지 못하는 원인으로 작용하게 된다. 본 연구의 목적은 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 유역의 하천 유출량을 모의함에 있어서 홍수 및 가뭄년, 평년의 유출특성이 모형의 매개변수 추정에 미치는 영향을 분석하고자 하는 것이다. 이를 위해, 안성천 유역($1,658.7km^2$)을 대상으로 유역 내 3지점의 기상관측소(이천, 수원, 천안)를 대상으로 40년(1976~2015)동안의 일 기상자료를 수집하여 SWAT 모형을 구축하였다. 홍수년 및 가뭄년, 평년을 포함하는 선별된 기간에 대하여 다양한 목적함수($R^2$, NSE, RMSE, PBIAS)를 활용하여 각각의 조합된 기간의 극단적 유출특성에 초점을 맞추어 검보정을 수행하였다. 이후 홍수년 및 가뭄년, 평년을 포함하는 선별된 기간에서의 유출량의 규모와 빈도에 영향을 미치는 매개변수를 도출하고 민감도를 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.