• 제목/요약/키워드: 예측 기간

검색결과 2,201건 처리시간 0.035초

기업인수.합병공시 전후의 매수.매도가격차이 움직임에 대한 실증적 연구

  • 변영훈
    • 재무관리연구
    • /
    • 제12권2호
    • /
    • pp.25-42
    • /
    • 1995
  • 본 연구에서는 기업인수 합병공시 전후에 관찰되는 매수 매도가격차이중에서 정보비용부분의 움직임을 살펴봄으로써 정보비대칭하의 시장미시구조이론을 검증하였다. 공시일을 예측할 수 없는 기업인수 합병공시를 대상으로 함으로써 효율적시장가설의 검증을 병행하는데 본 연구의 의의가 있다. 검증의 결과는 시장미시구조이론과 효율적시장가설을 지지한다. 공시전 전체기간에 대한 분석에서는 스프레드의 증가가 없었으나 부분기간에 대한 분석에서 스페셜리스트가 스프레드를 증가시키는 것을 확인하였다. 스프레드의 증가는 공시 3일전과 4일전에 나타났으며 이는 정보거래자에 대한 손실을 피하기 위하여 스프레드를 증가시킨다는 이론의 예측과 일치하는 증거이다. 그러나 정보누출과 이의 감지에는 시간차이가 존재하였다. 우호적공개매수와 적대적공개매수의 비교분석에서도 기업인수의 실현여부와 관련된 정보비대칭 현상에 대해 이론의 예측과 일치하는 결과를 얻었다.

  • PDF

홍수기중 실시간 저수지 운영(I) - 대청댐의 단일 저수지 운영 방안 - (Real-time Reservoir Operations during Flood Period(I) - Single Reservoir Oprating Rules at Daechong Dam -)

  • 심명필;선우중호;박인보
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1990년도 수공학논총 제32권
    • /
    • pp.105-116
    • /
    • 1990
  • 홍수기간중에는 강우, 유출, 저수지 및 하류 수위등의 수시로 변하는 자료들을 on-line system으로 읽어서 실시간으로 저수지를 운영하므로써 현상태에서의 최선의 방류량을 결정하는 것이 가장 바람직하며, 이를 위한 선행조건으로 정확한 강우및 유출예측모형과 하류의 홍수추적모형이 연계 된다면 저수지의 홍수조절 용량을 최대한 활용하여 최적의 방류량을 결정할 수 있다. 본 연구에서는 홍수기중 실시간 저수지 운영을 위해 여러가지 제약조건을 고려한 모델을 개발하여, 단일 저수지인 대청 다목적 댐을 대상으로 적용하였다. 예측 유입량 대신에 재현기간별 홍수수문곡선과 실제의 저수지 유입량을 이용했으며, 하류의 홍수추적 모형은 일정한 유량을 방류하는 것이 가장 안전하다고 가정하여 최대 방류량을 변화시키므로써 하도 추적모형을 대신 하였다. 본 모델은 별도의 강우 유출예측모형과 하도의 홍수추적모형과 더불어 종합적인 실시간 저수지 운영모델이 된다.

  • PDF

국민 청원 유사 글 분류 및 답변 받을 청원 예측 (Classification of similar national petitions and prediction of answerable petitions)

  • 박성아;우지영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.37-39
    • /
    • 2021
  • 청와대 국민 청원 게시판은 중복되는 국민 청원글과 20만 이상의 동의를 받았지만 관리자의 검토로 인해 답변이 지연되는 청원글들이 존재한다. 이는 중복 청원으로 인해 청원 동의 인원이 분산되고 답변이 지연되는 문제로 인해 국민들의 불만을 일으킨다. 따라서, 유사한 청원글을 분류하고 동일한 청원 참여 기간 내 유사한 청원글 수를 기반으로 20만 명 이상의 동의를 받을 청원 예측 모델을 구축하였다. 본문 내용만을 LSTM 모델에 적용했을 때 68%의 정확도, 20만 명 이상의 동의를 받은 청원 글에 대해서는 Precision 60%, F1-score 60%이었으나 청원 동의 가능 기간 내 유사한 글의 개수, 본문 길이, 제목의 길이를 추가하였을 때 모델은 74%의 정확도와 20만 명 이상의 동의를 받은 청원 글에 대해 74%의 Precision, 70%의 F1-score로 본문 내용만으로 학습한 모델보다 예측력이 더 높았다.

  • PDF

머신러닝 기반의 해군 정비인시 예측 모델 (Man Hour Prediction Model for ROK Navy's Maintenance Based on Machine Learning)

  • 유정민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.339-342
    • /
    • 2023
  • 해군에서 운용하는 각 함정은 여러 가지 무기체계를 동시에 탑재하고 있는, 고가의 복합무기체계이다. 주어진 기간동안 효과적인 정비를 수행함으로써, 가동률을 극대화하는 것이말로 복합무기체계인 함정을 효과적으로 운용하는 방법이며, 경제적인 국방운용이라 부를 수 있을 것이다. 정비인시는 여러 무기체계가 동시에 탑재된 복합무기체계 정비의 핵심이다. 정비인시를 정확하게 알고 있어야만, 제한된 정비기간을 각 무기체계에 정확히 할당할 수 있을 것이며, 최적의 요소에 대한 정비가 수행될 수 있을 것이다. 본 연구에서는 해군에서 운용중인 특정장비에 대한 약 10년간의 정비자료를 이용하여 정비인시를 예측하는 모델을 제안하였다. 모델의 성능은 R2 Score를 통해 0.69의 준수한 수치를 보였다. 이 모델을 통해 조금더 세밀하고, 정확한 정비인시 예측과 정비계획 수립이 가능하리라 판단하였다.

  • PDF

KOSPI 200예측에 있어서 개입시계열모형과 인공신경망모형의 성과비교

  • 양유모;하은호;오경주
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2003년도 추계학술대회 및 정기총회
    • /
    • pp.177-182
    • /
    • 2003
  • 많은 경제 시계열 자료 중에서 주가는 국내외 경제상황은 물론 정부정책 등 시장 외적인 영향에 가장 민감하게 반응한다. 하지만, 지금까지의 주가예측에 있어서는 이러한 외부의 영향, 즉 개입(Intervention)이 발생했을 때 주가의 변동에 능동적으로 대처하는 모형이 부재하였다. 실제로 이러한 개입사실을 예측모형에 반영하지 않는다면, 주가예측 있어 그 예측력을 따진다는 것은 무의미하다고 판단된다. 따라서, 개입시점을 발견하고, 이 개입효과를 측정하여 이를 모형에 반영한다면 좋은 예측결과를 얻을 수 있을 것이다. 이 연구에서는 이상점 탐지절차를 이용하여 개입 시점을 발견하고 개입의 효과가 개입시점에만 영향을 주는 모형과 효과가 일정기간 지속되는 모형으로 두 개의 개입시계열모형을 구축하고, 이러한 두 모형의 예측성과와 인공신경망모형을 이용한 예측성과를 비교하였다. 초단기예측(개입 직후 예측)에 있어서 개입의 효과가 지속되는 경우에는 개입시계열이 인공신경망보다 좋을 결과 를 나타내긴 했지만 그 차이는 크지 않았으며, 개입의 효과가 시점에만 영향을 준 경우에는 인공신경망의 결과가 더 우수한 것으로 나타났다. 단기예측(개입 후 20 일후의 예측)에 있어서는 개입 효과의 지속여부에 상관없이 인공신경망이 개입시계열모형보다 우수한 것으로 나타났다.

  • PDF

인공신경망 모형을 이용한 부산지점 강우량 예측 (Forecasting of Precipitation Base on Artificial neural network model in Busan)

  • 박윤경;김상단
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.540-540
    • /
    • 2015
  • 유역의 하천관리 및 홍수관리를 위하여 강우량을 정확하게 예측하고자 많은 수문학자들에 의해 강우량을 예측하는 연구를 진행하였다. 강우를 예측하기 위한 여러 가지 방법 중 인공신경망을 이용하여 강우를 예측하는 선행연구들을 살펴볼 수 있었다. 그러나 기존에 강우량을 예측하는 사례들을 살펴보게 되면, 강우사상이 발생된 후 강우량 예측은 비교적 높은 정확도를 가지고 있으나, 강우가 발생하기 시작하는 시점에 대한 강우량 예측은 그 정확성이 떨어지는 것을 확인할 수 있었다. 이에 본 연구에서는 무강우 기간에도 보다 정확하게 강우량을 예측할 수 있는 인공신경망 모델을 제안하고자 한다. 이를 위해 강우량 이외에도 기온, 풍속, 습도, 증기압, 전운량을 인공신경망의 입력자료로 활용하고자 하였다. 입력자료을 구성을 여러 가지 CASE로 구분하여 부산지점의 강우량을 예측하고 그 정확성을 평가하고자 하였다. 이 때, 사용되는 자료는 기상청 부산지점에서 제공하고 있는 1시간 간격자료를 적용하였다. 본 연구를 통해 개발된 인공신경망 모형을 이용하여 예측된 강우량은 부산 내에 위치한 하천관리 뿐 만 아니라 하천의 홍수 예 경보에 필요한 기초적인 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

한국 청년실업률 예측 모형에서 네이버와 구글 검색 정보의 유용성 분석 (Comparative Usefulness of Naver and Google Search Information in Predictive Models for Youth Unemployment Rate in Korea)

  • 정재운
    • 디지털융복합연구
    • /
    • 제16권8호
    • /
    • pp.169-179
    • /
    • 2018
  • 최근 고급 예측모형 연구에 웹 검색 정보가 활용되고 있다. 세계 웹 검색시장에서 구글이 절대적 우위를 점하고 있지만, 국내 웹 검색시장에서는 네이버가 절대적 우위를 보이고 있다. 이러한 특성을 토대로 본 연구는 예측모형을 활용하여 구글과 네이버의 한국어 검색 정보에 대한 유용성을 비교해 보고자 한다. 이를 위해 ARIMA 모형을 활용하여 세 가지의 한국 청년실업률 예측 시계열 모형을 개발하였다. 모형1은 한국 청년실업률 데이터만 사용하였으며, 모형2와 3은 모형1에 네이버와 구글의 검색어 정보를 각각 추가하였다. 모형 훈련기간에서는 모형1보다 모형2와 3이 더 우수한 예측력을 보였다. 모형2와 3은 서로 다른 검색어 정보와 상관관계를 보였으며, 예측기간 1과 2에서 모형3이 가장 좋은 성능을 보였다. 예측기간 2에서는 모형 3만 유의미한 예측결과를 나타내었다. 이 비교 연구는 네이버와 구글 검색엔진을 이용한 한국어 웹 검색 정보의 유용성을 이해하는 데 도움을 준다.

Icosahedral-Hexagonal 격자 체계의 전구 모형 GME를 이용한 장기 강수량 예측 (Long-term Precipitation Prediction with Icosahedral-hexagonal Gridpoint Model GME)

  • 우수민;오재호;고아라
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.2207-2211
    • /
    • 2008
  • 한반도 및 동아시아의 여름철은 장마와 태풍으로 인한 집중호우의 발생으로 많은 피해를 입는다. 따라서 여름철에 나타나는 이러한 집중호우가 나타나는 지역, 시기, 기간, 그리고 강수량 등을 예측하는 것은 매우 중요하다. 특히, 효율적인 수자원 관리를 위하여 이러한 예측은 매우 중요한데, 단기적으로 정확하고 신속하게 강수를 예측하는 것도 중요하지만, 장기적으로 계절 강수, 특히 여름철의 장마 또는 우기의 시기와 강수량과 태풍 발생의 시기 등을 미리 예측하여 이에 따른 집중 호우의 발생 지역, 기간, 강수량을 예측하여 사전에 대비하는 것도 매우 중요하다. 특히, 최근에는 6,7월 장마에 의한 집중 호우의 영향보다도 8월에 강수량이 높아지고 있는 경향을 보이므로 강수량의 장기적 경향의 파악이 매우 중요하다. 장기 기후를 예측하는 데는 과거 자료를 이용한 통계 방법도 유용하지만 최근에는 AOGCM (Atmospheric Oceanic General Circulation Model)을 이용한 연구가 활발하게 이루어지고 있다. 하지만 강수와 같이 지역적으로 나타나는 현상은 저해상도의 AOGCM으로는 유용한 정보를 제공하기가 어려움이 따른다. 따라서 본 연구에서는 전구를 삼각형으로 된 20면체로 격자화 시켜 모든 격자의 크기가 거의 동일하고, 해상도 조절이 가능한 Geodesic 격자를 활용한 GME 모델을 사용하였다. GME 모델은 icosahedral-hexagonal grid 격자 체계를 가진 독일 기상청(Deutscher Wetterdient)에서 현업으로 사용 중인 모델이다. 본 연구에서는 수직/수평 해상도를 40km/40layers로 하여 GME 모델을 수행하였으며, 일간격의 장기 기후 자료를 생산하였다. 사용된 초기자료로는 ECMWF (European Centre for Medium Range Weather Forecasts) 자료이며, 경계 자료로는 ERA Climatology의 최근 30년간의 SST (Sea Surface Temperature) 평균 자료를 이용하여 규준 실험(Control Run), 즉, climatology 자료를 생산하였으며, persistent SST 아노말리와 ERA Climatology의 최근 30년간의 SST 자료를 이용하여 내삽 과정을 거친 SST forcing을 주어서 예측 실험(Prediction Run)을 통하여 모의 자료를 생산하였다. 특히, 규준 실험에서는 수치 모델이 가지는 불확실성을 줄이고 예보 정확도를 향상시키기 위하여 각각의 실험은 초기자료를 달리한 앙상블 모의실험을 수행하였다. 장기 모의 3개월을 위하여 모의 기간 1달 전부터 모의를 수행하여, 첫 1달은 모델의 spin-up 시간으로 분석에서 제외 하였다. 생산된 Climatology 자료와 Prediction 자료를 비교하여 아노말리와 Category 분석을 실시하여 한반도 및 동아시아 지역의 강수(Precipitation)를 중심으로 기압장(Pressure), 온도(2m Temperature) 위주로 분석하였다. 이러한 예측된 매 계절의 전망 자료 중에서도 수자원 분야에서 관심이 집중되는 여름철에 초점을 맞추어 실제 관측 자료와 비교하여 GME 모델의 계절 모의 예측성 성능을 분석하여 평가하고 다가올 여름철의 강수량의 장기 변화를 모의하고자 하였다.

  • PDF

다지점 인공신경망을 이용한 한강수계 기후전망 (Han River Basin climate forecast using multi-site artificial neural network)

  • 강부식;문수진;김정중
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.371-371
    • /
    • 2011
  • 본 연구에서는 한강유역 내 관측기간이 충분한 기상청 지상관측소 10개소를 선정하고 CCCma(Canadian Century for Climate modeling and analysis)에서 제공하는 자료에 대한 인공신경망기법 상세화 적용을 실시하였다. 인공신경망의 학습을 위해 CGCM3.1/T63 20C3M시나리오(reference scenario)의 22개 2D변수 중 물리적으로 민감도가 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 선정하였으며 인공신경망 학습기간은 1991년~1995년, 검증기간은 1996년~2000년, 예측기간은 2011년~2100년으로 A1B, A2 B1 시나리오 등 다양한 기후변화 시나리오를 통해 예측band를 제시하고자 하였다. 하지만 공간상관을 고려하기 위하여 각 관측소에 대하여 인공신경망 학습을 하는 경우 관측소간 spatial correlation 및 spatial cluster구현이 어렵기 때문에 Spatial Rectangular Pulse모형을 이용하고자 하였으나, 강수면적에 대한 scale의 결정이 어렵다는 단점을 확인 하고 본 연구에서는 Random Cascade 모형을 이용하여 ${\beta}$를 통한 강수면적 scale(rainy area fraction)을 결정하고자 하였다. Random Cascade모형의 기법은 격자단위의 downscaling기법으로 강수대의 공간적 형상을 재현하며 스케일에 비종속적인(scale-invariant)프랙탈 특성을 이용하여 매개변수를 최소화 할 수 있는 장점을 가진 기법으로 한강유역 1Km내외 강우장을 만들어 topographic effect를 첨가하고자 한다.

  • PDF

홍수 및 가뭄년의 유출특성이 SWAT 모형 매개변수 추정에 미치는 영향 (The Effects of SWAT Model Parameterization on the Prediction of Runoff Characteristics Including Flood and Drought Years)

  • 김다래;이지완;안소라;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.151-151
    • /
    • 2016
  • 하천 유역의 수자원관리에 있어서 홍수 및 가뭄 기간에 유출의 규모와 빈도와 같은 유출특성을 신뢰할 수 있도록 예측하는 것은 매우 중요하다. 수문모형은 이러한 유역의 신뢰성 있는 유출량 예측을 위해 이용되며, 수문모형의 결과물은 수문순환 과정의 공간적 표출이나 매개변수 추정방법 등 다양한 요인에 매우 민감하게 반영된다. 대부분의 수문모형 매개변수들은 해당 유역의 특성이나, 홍수 및 가뭄과 같은 극단적 유출상황에 따라 설정되어 있지 못한 실정이며, 이는 모형의 신뢰성 있는 보정 및 유출량 모의를 보다 정밀하게 수행하지 못하는 원인으로 작용하게 된다. 본 연구의 목적은 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 유역의 하천 유출량을 모의함에 있어서 홍수 및 가뭄년, 평년의 유출특성이 모형의 매개변수 추정에 미치는 영향을 분석하고자 하는 것이다. 이를 위해, 안성천 유역($1,658.7km^2$)을 대상으로 유역 내 3지점의 기상관측소(이천, 수원, 천안)를 대상으로 40년(1976~2015)동안의 일 기상자료를 수집하여 SWAT 모형을 구축하였다. 홍수년 및 가뭄년, 평년을 포함하는 선별된 기간에 대하여 다양한 목적함수($R^2$, NSE, RMSE, PBIAS)를 활용하여 각각의 조합된 기간의 극단적 유출특성에 초점을 맞추어 검보정을 수행하였다. 이후 홍수년 및 가뭄년, 평년을 포함하는 선별된 기간에서의 유출량의 규모와 빈도에 영향을 미치는 매개변수를 도출하고 민감도를 평가하였다.

  • PDF