• Title/Summary/Keyword: 예측편의

Search Result 382, Processing Time 0.027 seconds

Development of decision support system for water resources management using GloSea5 long-term rainfall forecasts and K-DRUM rainfall-runoff model (GloSea5 장기예측 강수량과 K-DRUM 강우-유출모형을 활용한 물관리 의사결정지원시스템 개발)

  • Song, Junghyun;Cho, Younghyun;Kim, Ilseok;Yi, Jonghyuk
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.22-34
    • /
    • 2017
  • The K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model), a distributed rainfall-runoff model of K-water, calculates predicted runoff and water surface level of a dam using precipitation data. In order to obtain long-term hydrometeorological information, K-DRUM requires long-term weather forecast. In this study, we built a system providing long-term hydrometeorological information using predicted rainfall ensemble of GloSea5(Global Seasonal Forecast System version 5), which is the seasonal meteorological forecasting system of KMA introduced in 2014. This system produces K-DRUM input data by automatic pre-processing and bias-correcting GloSea5 data, then derives long-term inflow predictions via K-DRUM. Web-based UI was developed for users to monitor the hydrometeorological information such as rainfall, runoff, and water surface level of dams. Through this UI, users can also test various dam management scenarios by adjusting discharge amount for decision-making.

Nearest-neighbor Rule based Prototype Selection Method and Performance Evaluation using Bias-Variance Analysis (최근접 이웃 규칙 기반 프로토타입 선택과 편의-분산을 이용한 성능 평가)

  • Shim, Se-Yong;Hwang, Doo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.73-81
    • /
    • 2015
  • The paper proposes a prototype selection method and evaluates the generalization performance of standard algorithms and prototype based classification learning. The proposed prototype classifier defines multidimensional spheres with variable radii within class areas and generates a small set of training data. The nearest-neighbor classifier uses the new training set for predicting the class of test data. By decomposing bias and variance of the mean expected error value, we compare the generalization errors of k-nearest neighbor, Bayesian classifier, prototype selection using fixed radius and the proposed prototype selection method. In experiments, the bias-variance changing trends of the proposed prototype classifier are similar to those of nearest neighbor classifiers with all training data and the prototype selection rates are under 27.0% on average.

Development of daily spatio-temporal downscaling model with conditional Copula based bias-correction of GloSea5 monthly ensemble forecasts (조건부 Copula 함수 기반의 월단위 GloSea5 앙상블 예측정보 편의보정 기법과 연계한 일단위 시공간적 상세화 모델 개발)

  • Kim, Yong-Tak;Kim, Min Ji;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study aims to provide a predictive model based on climate models for simulating continuous daily rainfall sequences by combining bias-correction and spatio-temporal downscaling approaches. For these purposes, this study proposes a combined modeling system by applying conditional Copula and Multisite Non-stationary Hidden Markov Model (MNHMM). The GloSea5 system releases the monthly rainfall prediction on the same day every week, however, there are noticeable differences in the updated prediction. It was confirmed that the monthly rainfall forecasts are effectively updated with the use of the Copula-based bias-correction approach. More specifically, the proposed bias-correction approach was validated for the period from 1991 to 2010 under the LOOCV scheme. Several rainfall statistics, such as rainfall amounts, consecutive rainfall frequency, consecutive zero rainfall frequency, and wet days, are well reproduced, which is expected to be highly effective as input data of the hydrological model. The difference in spatial coherence between the observed and simulated rainfall sequences over the entire weather stations was estimated in the range of -0.02~0.10, and the interdependence between rainfall stations in the watershed was effectively reproduced. Therefore, it is expected that the hydrological response of the watershed will be more realistically simulated when used as input data for the hydrological model.

Conflict of Interests and Analysts' Forecast (이해상충과 애널리스트 예측)

  • Park, Chang-Gyun;Youn, Taehoon
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.239-276
    • /
    • 2009
  • The paper investigates the possible relationship between earnings prediction by security analysts and special ownership ties that link security companies those analysts belong to and firms under analysis. "Security analysts" are known best for their role as information producers in stock markets where imperfect information is prevalent and transaction costs are high. In such a market, changes in the fundamental value of a company are not spontaneously reflected in the stock price, and the security analysts actively produce and distribute the relevant information crucial for the price mechanism to operate efficiently. Therefore, securing the fairness and accuracy of information they provide is very important for efficiencyof resource allocation as well as protection of investors who are excluded from the special relationship. Evidence of systematic distortion of information by the special tie naturally calls for regulatory intervention, if found. However, one cannot presuppose the existence of distorted information based on the common ownership between the appraiser and the appraisee. Reputation effect is especially cherished by security firms and among analysts as indispensable intangible asset in the industry, and the incentive to maintain good reputation by providing accurate earnings prediction may overweigh the incentive to offer favorable rating or stock recommendation for the firms that are affiliated by common ownership. This study shares the theme of existing literature concerning the effect of conflict of interests on the accuracy of analyst's predictions. This study, however, focuses on the potential conflict of interest situation that may originate from the Korea-specific ownership structure of large conglomerates. Utilizing an extensive database of analysts' reports provided by WiseFn(R) in Korea, we perform empirical analysis of potential relationship between earnings prediction and common ownership. We first analyzed the prediction bias index which tells how optimistic or friendly the analyst's prediction is compared to the realized earnings. It is shown that there exists no statistically significant relationship between the prediction bias and common ownership. This is a rather surprising result since it is observed that the frequency of positive prediction bias is higher with such ownership tie. Next, we analyzed the prediction accuracy index which shows how accurate the analyst's prediction is compared to the realized earnings regardless of its sign. It is also concluded that there is no significant association between the accuracy ofearnings prediction and special relationship. We interpret the results implying that market discipline based on reputation effect is working in Korean stock market in the sense that security companies do not seem to be influenced by an incentive to offer distorted information on affiliated firms. While many of the existing studies confirm the relationship between the ability of the analystand the accuracy of the analyst's prediction, these factors cannot be controlled in the above analysis due to the lack of relevant data. As an indirect way to examine the possibility that such relationship might have distorted the result, we perform an additional but identical analysis based on a sub-sample consisting only of reports by best analysts. The result also confirms the earlier conclusion that the common ownership structure does not affect the accuracy and bias of earnings prediction by the analyst.

  • PDF

Estimation of G/R Ration for the Correction of Mean-Field Bias of Very-Short-Term Rainfall Forecasting (초단기예측강우의 편의보정을 위한 G/R비 추정)

  • Yoo, Chulsang;Kim, Jungho;Chung, Jae Hak;Yang, Dong-Min
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.176-176
    • /
    • 2011
  • 전 세계적으로 국지성 집중호우의 발생이 증가하고 있다(건설교통부, 2007 ; 김광섭과 김종필, 2008). 특히, 국내의 경우 급속한 도시화에 의한 기상 변화의 영향으로 서울 및 중소도시 지역에 집중호우의 발생이 크게 증가하였고, 산악지역에 발생한 강도 높은 집중호우로 인하여 돌발홍수의 발생 또한 급증하고 있다. 이처럼 집중호우는 단시간에 큰 강우강도를 동반하여 돌발홍수를 유발할 뿐만 아니라 잦은 발생으로 인하여 막대한 재산 손실과 인명 피해를 초래하고 있다(유철상 등, 2007a). 현실적으로 이러한 이상호우에 의한 피해를 원천적으로 방지하는 것은 불가능하다. 그러나 어느 정도(accuracy) 이상의 강우예측이 전제된다면 피해의 규모를 크게 줄일 수 있는 것이 또한 사실이다(유철상 등, 2007b). 집중호우로 인한 피해의 주범은 수 시간이내에 발생하는 돌발홍수로서 이에 대한 피해를 최소화하기 위해서는 정확한 초단기예측 강우가 절실한 상황이다. 이에 본 연구에서는 초단기예측 강우의 보정을 목적으로 G/R 비를 예측하였다. 먼저, 강우의 임계치와 누적시간에 따른 G/R 비의 특성변화를 검토하여 G/R 비 산정방법을 개선하였다. 초단기예측 강우로 캐나다 McGill 대학교에서 개발된 MAPLE 예측강우를 사용하였으며, 이를 보정하기 위하여 칼만 필터를 이용하여 G/R 비를 실시간으로 예측하였다. 이러한 분석은 레이더 자료의 품질이 가장 양호할 것으로 판단되는 내륙지역을 대상으로 하였다. 결과적으로 강우의 임계치와 누적시간의 고려를 통해 안정화된 G/R 비의 산정이 가능하였으며, 이를 이용함으로서 예측 G/R 비의 정확성이 보다 향상되었다.

  • PDF

Estimation of Moment Resisting Property for Pin Connection Using Shear Strength of Small Glulam Specimens (집성재 소시험편의 전단강도에 의한 핀접합부의 모멘트 저항성능 예측)

  • Hwang, Kweonhwan;Park, Joosaeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.58-65
    • /
    • 2008
  • Most connections for the glulam structural members consisted of connector and fastener. The mechanical behaviour of the connection can be occurred by the dowel bearing resistance and wood shear by the fastener. This study aims at the examination of the shear properties for the small specimen with lamination components and for the full-sized pin connection and the moment resisting property for the double shear full-sized pin connection using structural column and beam members. Small specimens including glue line shows greater density and shear strength by the lamination effect than other specimens. It is needed that estimations of double shear property and moment resistance for the pin connections should be adjusted in some degree. For the better and safe estimation of moment resistance strength for the column-beam pin connection, however, the shear strength of small specimens should be deducted by 10%.

Development of Predictive Models of Listeria monocytogenes in Fresh-Cut Fruits and Vegetables (신선편의 냉장·냉동 과채류에서 Listeria monocytogenes의 예측모델 개발)

  • Kim, Geun Hyang;Lim, Ju Young;Kim, Yeon Ho;Yang, So Young;Yoon, Ki Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.495-502
    • /
    • 2020
  • Processing fresh produce into fresh-cut products increases the risk of bacterial growth and contamination by breaking the exterior barrier of produce. Our objective in this study was to develop predictive models of Listeria monocytogenes in the fresh-cut salad, fresh-cut pineapple, and frozen mango. Predictive growth and survival models were developed to predict the change of L. monocytogenes populations in the fresh-cut salad (4, 10, 12, 13, 17, 25, and 36℃), fresh-cut pineapple (4, 10, 17, 25, 30, and 36℃), and frozen mango (-2, -10 and -18℃) as a function of temperature. The growth of L. monocytogenes in fresh-cut salad and pineapple was observed at above 13℃ and 10℃, respectively. The growth of L. monocytogenes in pineapple was faster than in salad. The delta value of L. monocytogenes in frozen mango increased as the storage temperature decreased. The results indicate that L. monocytogenes behave differently according to the physicochemical properties of fresh-cut fruits and vegetables. Since L. monocytogenes grow and survive well in refrigerated and frozen conditions, management programs and preventive controls for the processing of fresh-cut produce should be effectively implemented to enhance the safety of fresh-cut fruits and vegetables at retail markets.

Natural Disaster Damage Cost Prediction Model based on Neural Network and Genetic Algorithm (신경망과 유전자 알고리즘을 이용한 자연재해 피해예측 모델 연구)

  • Choi, Seon-Hwa
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.380-384
    • /
    • 2010
  • 기후온난화, 국지성 호우 및 대규모 태풍으로 인한 피해가 증대되면서 사회 경제적 손실 또한 날로 증가하고 있어 재해로 인한 피해 발생가능성을 효율적으로 예측하는 모델을 통한 선제적 대응이 필요하다. 재난 재해의 위험성 분석 방법은 주로 확률 통계기법을 기반으로 하는 연구가 주류를 이루었으나, 본 논문에서는 포착된 현상의 데이터를 이용해 그 데이터를 지배하는 경험적 규칙성을 학습하고 획득하는데 다른 기법보다 탁월한 성능을 가진 신경망 모델을 적용하여 자연재해 피해예측 모델을 연구하였다. 1991년부터 2005년 사이에 우리나라에서 발생한 자연재해의 피해자료와 기상개황 자료를 이용하여 지역별 자연재해로 인한 피해를 예측하는 신경망 모델은 우리나라 232개 행정구역에 대하여 누적강우량과 최대풍속, 그리고 재해사상 발생 5일 이내의 선행강우량을 입력변수로 하고 총 피해액을 출력변수로 한다. 또한 학습을 통한 최적의 해를 찾기 위해 신경망의 매개변수 학습률, 모멘텀, 편의값을 유전자알고리즘으로 결정하여 학습을 수행 하였다.

  • PDF

An Analysis of Corelation between Movie Attendance and Related Tweets for Predicting Box Office (영화 흥행 예측을 위한 영화 관객 수와 관련 트윗간의 상관관계 분석)

  • Yim, Junyeob;Hwang, Byung-Yeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1245-1247
    • /
    • 2013
  • 최근 들어 영화에 대한 수요가 증가하면서 국내 영화시장규모는 지속적으로 성장하고 있다. 이와 관련하여 여러 가지 위험요소를 제거하고 시장에서의 성공을 위해 영화의 흥행을 예측하기 위한 다양한 연구들이 진행되고 있다. 그러나 그러한 예측을 위한 관련 요소들 간의 상관관계를 정확한 수치로 표현하는 일은 매우 어려우며 관련연구 또한 아직 미흡하다. 본 논문에서는 트위터에서 발생되는 트윗을 설문 표본으로 삼고 영화 관련 트윗과 영화의 흥행을 의미하는 관객 수와의 상관관계를 분석하여 상관계수를 도출하였다. 실험 결과 실험에 사용된 영화 10편의 관객 수에 대한 데이터 모두 관련 트윗의 발생비율과 양의 상관관계를 가짐을 알 수 있었으며 이를 통해 트위터를 이용한 영화의 흥행 여부 예측에 대한 가능성을 제시했다.