본 연구는 우리나라 상장기업중 금융 보험업을 제외하고 비교적 상장기업수가 많은 9개 산업에서 임의로 선정한 180개 표본기업을 분석대상으로 하였다. 1989년 1월부터 1996년 12월까지를 분석대상기간으로 설정하여 베타계수 예측능력을 향상시키기 위한 회계위험변수모형의 예측능력을 평가하고 위험수준별 예측능력에 차이가 있는지도 분석하였다. 아울러 베타계수 추정시 사용된 수익률 측정간격에 빠른 베타계수의 안정성과 회계위험변수모형의 예측능력을 분식하였다. 본 연구의 중요한 결과를 요약하면 다음과 같다. 첫째, 포트폴리오를 구성한 경우 수익률 측정기간에 관계없이 일관되게 예측오차가 유의적으로 적게 나타나 회계위험변수모형의 베타계수 예측능력이 우수하였으며 베타계수예측에 회계 변수의 유용성이 확인되었다. 둘째, 위험수준에 따른 베타계수의 안정성 분석에서는 중위험집단의 베타가 안정성이 높았으며 고위험집단에서 예측오차가 가장 크게 나타나 불안정하였다. 회계위험변수모형의 예측능력은 위험수준에 관계없이 단순모형보다 우수하여 베타예측에 회계정보의 유용성을 일반화시킬 수 있을 것이다. 셋째, 수익률 측정간격에 따른 베타계수의 안정성과 예측능력 분석에서는 월별수익률을 이용하는 경우보다 주별수익률을 이용하는 경우 추정베타의 안정성이 높고 베타계수 예측모형의 예측능력이 향상되는 것으로 나타났다. 넷째, OLS베타를 수정하지 않고 이용하는 경우보다 Bayesian 기법으로 수정한 Bayesian수정 베타를 이용할 경우 예측오차가 감소하여 Bayesian 수정기법의 유용성이 확인되었다.
Proceedings of the Korea Water Resources Association Conference
/
한국수자원학회 2018년도 학술발표회
/
pp.17-17
/
2018
재난발생 위험은 불확실성을 내포하고 있으며, 이러한 불확실성 요인을 줄이고 사전에 소멸시키는 일은 매우 중요한 사항이 될 수 있다. 또한 재난관리 관점에서 그것이 발생했을 때 어떤 식으로 대응할지에 대한 과정이 체계적으로 갖추어져 있어야 하며, 복구 및 재발 방지를 위한 지속적인 노력이 수반될 필요성이 있다. 본 연구에서는 기후정보를 활용한 중장기 수문예측을 실시하고 통합홍수위험평가 시스템 구축을 통한 홍수위험도 분석을 실시하였다. 이를 위하여 우리나라 243개 지자체를 대상으로 홍수관련 위해성, 노출성, 취약성 자료를 수집하여 표준화하였으며, 전문가 Delphi-AHP 설문조사 분석을 통하여 가중치를 적용하고 위험도를 예측 평가하였다. 이러한 중장기 위험 예측 정보는 한 달 또는 수개월 전에 지자체 행정력을 집중 및 분산시키고, 수재해(홍수/가뭄 등) 위험관리 계획 수립이 가능하여 재난관리자에게 유용한 정보로 활용될 수 있을 것이다. 또한 재난의 생애주기(Life Cycle)별 예방, 대비, 대응, 복구 단계에 따라 사전과 사후에 가능한 주요 활동들을 구체화 할 수 있으며, 시간 스케일별 기후예측 정보를 활용한 재난관리 패러다임 전환과 골든타임 확보 등 수자원예측 분야 기술적 진보를 이룰 수 있을 것으로 기대한다. 향후 통계 역학 모형 기반 중 장기 예측 정보의 신뢰도가 향상 된다면 보다 다양한 분야 예측 정보 서비스 및 활용이 가능할 것이다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
한국항해항만학회 2022년도 추계학술대회
/
pp.73-75
/
2022
본 논문에서는 자율운항선박의 예측 가능한 운항 경로 상에 잠재된 비상상황을 인식하기 위하여 운항 해역의 항적 정보를 활용한 방안과 이를 기반으로 충돌 위험과 같은 비상위험을 식별하는 프레임워크를 설계하였다. 설계한 프레임워크는 크게 항적 특성 분석 모듈, 항로예측 모듈, 위험 식별 모듈로 구성된다. 항적 특성 분석 모듈에서는 자율운항선박의 운항 해역에 관한 선박들의 항적 정보를 활용하기 위하여, 대상 VTS 관제 영역 내에서 취합된 누적 선박자동식별장치(AIS) 데이터를 이용하여 선박의 항적 특성을 분석하여 데이터베이스(DB)를 생성하였다. 그리고 운항 경로 예측 모듈에서는 누적된 항적 정보와 자율운항선박의 현재 운항 정보를 기반으로 특정 시간 동안의 운항 경로를 예측하기 위한 학습 네트워크 모델을 구성하였다. 마지막으로, 위험 식별 모듈에서는 예측한 운항 경로 상에 최근접점과 최근접점 거리 정보를 이용하여 충돌 위험 가능성이 있는 충돌위험영역을 식별하였다. 설계한 프레임워크는 자율운항선박의 육상 관제소에서 원격 제어를 통해 위험상황을 인지하고 회피할 수 있는 정보를 제공할 수 있음을 실제 항적 데이터를 활용하여 그 결과를 검증하였다.
Kim, Jong Sung;Choi, Chang Hyun;Lee, Jong So;Kim, Hung Soo
Proceedings of the Korea Water Resources Association Conference
/
한국수자원학회 2017년도 학술발표회
/
pp.154-154
/
2017
전 세계적인 기후변동과 기후변화의 영향으로 대규모 인명 및 재산피해를 유발하는 자연재난의 빈도와 강도가 증가하고 있다. 이렇게 변화하는 상황에서 효율적인 대책을 수립하기 위해서는 재해에 노출된 특성을 지역적 특성과 함께 고려하여 지역별로 재해에 위험한 정도를 평가하는 것이 선행되어지고, 재난 피해 발생전에 피해 지역 및 범위를 예측하는 것이 필요하다고 판단된다. 따라서 본 연구에서는 국내 자연재난 피해의 65% 이상을 차지하는 호우피해를 대상으로 PSR(Pressure-State-Response) 구조를 이용하여 호우피해위험지수(Heavy rain Damage Risk Index, HDRI)를 제안하여 호우 위험도를 평가하고자하였다. 또한 도출된 지역별 위험등급에 따른 호우피해 예측함수를 개발하여 재해발생 전에 개략적인 피해의 범위를 예측하고자 하였다. 먼저 지역별 호우 위험도 평가를 위해 압력지표, 현상지표, 대책지표를 구축하고, 주성분분석을 이용하여 평가지표를 결정하였다. 결정된 평가지표를 동일한 가중치를 부여하여 호우피해위험지수를 도출하였다. 분석결과, 경기도 31개 지자체 중에서 가장 안전한 1등급인 지자체는 15개의 지자체로 나타났으며, 2등급인 지자체는 7개, 3등급인 지자체는 9개로 분류되었다. 지자체별 호우 위험도 등급에 따라서 재해기간별 총강우량, 재해일수, 선행강우량(1~5일), 지속시간별 최대강우량(1~24시간) 등의 자료를 설명변수로 구축하였고, 다중회귀모형과 주성분분석을 활용하여 예측함수를 개발하였다. 등급별 호우피해 예측함수는 N-RMSE가 12~18%로 호우피해를 적절하게 예측하는 것으로 평가되었다. 본 연구를 통해 지자체별 호우피해위험도 등급을 파악 할 수 있으며, 평가된 호우피해위험도 등급별로 호우피해 예측함수 개발을 통해 사전에 호우피해 발생 및 규모를 파악할 수 있게 되었다. 따라서 본 연구의 결과는 각 지자체 및 관련 부처에서 효과적인 방재체계를 수립하는데 있어 기초자료로 활용될 수 있을 것으로 판단된다.
The purpose of this study is to calculate the economic value of transport demand forecasting risks in the road PPP project. Under the assumption that volatility of the road PPP project value occurs only in regard with uncertainty of traffic volume forecasting, this study calculates the economic value of the traffic forecasting risks in the case of the road PPP project. To that end, forecasted traffic volume is assumed to be a stochastic variable and to follow the Geometric Brownian motion as time passes. In particular, this study attempts to differentiate itself from existing studies that simply use an arbitrary assumption by presenting the application of different traffic volume growth volatility and the rates before and after the ramp-up period. Analysis of the case projects reveals that the risk premium related to traffic volume forecast of the project turns out as 7.39~8.30%, without considering option value-such as minimum revenue guarantee-while the project value volatility caused by transport demand forecasting risks is 17.11%. As the discount rate grows higher, the project value volatility tends to decrease and volatility in project value is always suggested to be larger than that in transport volume influenced by leverage effect due to fixed expenditure. The market value of transport demand forecasting risk-calculated using the project value volatility and risk premium-is analyzed to be between 0.42~0.50, implying that a 1% increase or decrease in the transport amount volatility would lead to a 0.42~0.50% increase or decrease in risk premium of the project.
Since the landslide hazard areas prediction was analyzed by slope-angle and soil properties, regional characteristics is not taken. Therefore, in order to make more rational prediction, it is necessary to consider the characteristics of the region. Tree roots have been known to increase soil cohesion in landslide hazard areas and to vary the degrees depending on the tree type. In addition, a reasonable prediction of landslide hazard areas can be made by considering crown density based on crown distribution patterns of the area of interest. In this study, using the roots cohesion considering the crown density of the trees, which is in the landslides risk areas around Mt. Gwehwa in Sejong City, the landslides risk areas were predicted and compared with predicted results obtained by not considering root cohesion.
In this study, the hazard areas are identified by using the Newmark displacement model, which is a predictive model for identifying the areas at risk of landslide triggered by earthquakes, based on the results of field survey and laboratory test, and literature data. The Newmark displacement model mainly utilizes earthquake and slope related data, and the safety of slope stability derived from LSMAP, which is a landslide prediction program. Backyang Mt. in Busan where the landslide has already occurred, was chosen as the study area of this research. As a result of this study, the area of landslide prone zone identified by using the Newmark displacement model without earthquake factor is about 1.15 times larger than that identified by using LSMAP.
Proceedings of the Korea Water Resources Association Conference
/
한국수자원학회 2016년도 학술발표회
/
pp.91-91
/
2016
본 연구는 대규모 대기환경패턴 변화에 따른 극한 기후발생 및 극치 수문사상의 지역적 변동 특성을 분석하였고, 통계기법을 이용한 기후지수와 수문변량간의 원격상관관계 분석결과를 이용하여 한반도 중 장기 수문변량 예측의 가능성을 진단하였다. 또한 경남 지자체를 대상으로 다양한 통계예측모형(AR, MA, ARMA, ARIMA, VAR)을 구축하여 그 예측능력을 평가하고 적용성을 검토하였고, 중 장기 통합홍수위험 평가를 위한 인덱스를 개발하였다. 서로 다른 엘니뇨 시기별 홍수 위험도 평가결과 전형적인 엘니뇨(Cold Tongue El Nino)해에는 남해안 일부 지역(거제시, 남해군)에서 위험도가 높게 산정되었으며, 경남 북부지역에서는 위험도가 매우 낮게 산정되었다. 중앙태평양 엘니뇨(Warm Pool El Nino) 해에는 경남 남부 지역을 중심으로 홍수위험지수가 높게 나타나 중앙태평양 엘니뇨가 발달 시 경남지역의 홍수위험 발생 가능성 평년에 비하여 큰 것으로 분석된다. 또한 라니냐(La Nina) 해에는 경남 서쪽일부 지역(남해군, 하동군, 산청군)에서 통합홍수위험지수가 높게 나타났으며, 나머지 지역에서는 홍수위험도가 작거나 중간 값을 보이는 것으로 분석되었다. 본 연구는 중 장기적 관점에서 수자원 예측 및 효율적인 물 관리와 안정적인 용수공급에 도움을 줄 것으로 사료되며, 한반도 대상 특정 엘니뇨 해의 지자체별 홍수위험 취약성 평가에 활용이 가능할 것이다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
제22권2호
/
pp.51-62
/
2022
This study suggests a design of predictive modeling for a hospital fall risk based on inpatients' posture. Inpatient's profile, medical history, and body measurement data along with basic information about a bed they use, were used to predict a fall risk and suggest an algorithm to determine the level of risk. Fall risk prediction is largely divided into two parts: a real-time fall risk evaluation and a qualitative fall risk exposure assessment, which is mostly based on the inpatient's profile. The former is carried out by recognizing an inpatient's posture in bed and extracting rule-based information to measure fall risk while the latter is conducted by medical staff who examines an inpatient's health status related to hospital fall risk and assesses the level of risk exposure. The inpatient fall risk is determined using a sigmoid function with recognized inpatient posture information, body measurement data and qualitative risk assessment results combined. The procedure and prediction model suggested in this study is expected to significantly contribute to tailored services for inpatients and help ensure hospital fall prevention and inpatient safety.
In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.