Journal of the Korean Society of Hazard Mitigation
/
v.11
no.2
/
pp.45-52
/
2011
To improve fire-resistance of a high strength concrete against spalling under elevated temperature, fibers can be mixed to provide flow paths of evaporated water to the surface of concrete when heated. In this study, the experiment of a column under fire and mechanical loads is conducted and the material model for predicting temperature of reinforcement steel bar and mechanical behavior of fiber-mixed high strength concrete is suggested. The material model in previous studies is modified by incorporating physical behavior of internal concrete and thermal characteristics of concrete at the elevated temperature. Thermo-mechanical analysis of the fiber-mixed high strength concrete column is conducted using the calibrated material model. The performance of the proposed material model is confirmed by comparing thermo-mechanical analysis results with the experiment of a column under fire and mechanical loads.
The Journal of the Korea institute of electronic communication sciences
/
v.14
no.1
/
pp.257-264
/
2019
This paper presents a single image haze removal method via a pixel-based joint BDCP (bright and dark channel prior) and a hierarchical bilateral filter in order to reduce computational complexity and memory requirement while improving the dehazing performance. Pixel-based joint BDCP reduces the computational complexity compared to the patch-based DCP, while making it possible to estimate the atmospheric light in pixel unit and the transmission more accurately. Moreover the bilateral filter, which can smooth an image effectively while preserving edges, refines the transmission to reduce the halo effects, and its hierarchical structure applied to edges only prevents the increase of complexity from the iterative application. Experimental results on various hazy images show that the proposed method exhibits excellent haze removal performance with low computational complexity compared to the conventional methods, and thus it can be applied in various fields.
Recently the massive amount of data has been generated because of the number of edge devices increases. And especially, the number of raw unstructured HTML documents has been increased. Therefore, MRC(Machine Reading Comprehension) in which a natural language processing model finds the important information within an HTML document is becoming more important. In this paper, we propose HTDE(HTML Tag Depth Embedding Method), which allows the BERT to train the depth of the HTML document structure. HTDE makes a tag stack from the HTML document for each input token in the BERT and then extracts the depth information. After that, we add a HTML embedding layer that takes the depth of the token as input to the step of input embedding of BERT. Since tokenization using HTDE identifies the HTML document structures through the relationship of surrounding tokens, HTDE improves the accuracy of BERT for HTML documents. Finally, we demonstrated that the proposed idea showing the higher accuracy compared than the accuracy using the conventional embedding of BERT.
Kim, Kwangjoon;Kim, Hyunguk;Kim, Sung-Ryul;Lee, Jinsun
Journal of the Korean Geotechnical Society
/
v.38
no.5
/
pp.19-33
/
2022
Newmark's sliding block analysis is the most commonly used method for predicting earthquake-induced permanent displacement of embankment slopes. Additionally, it yields the amount of slip circle sliding using the limit equilibrium theory. Thus, permanent displacement does not occur until the seismic load exceeds the yield acceleration, which induces sliding of the slip circle. The evolution of Newmark's sliding block analysis has been made by introducing the numerical seismic response analysis results since it was introduced. This study compares seismic performance evaluation results for the example enclosure dam section with the analysis methods. As a result, earthquake-induced permanent displacement using Newmark's sliding block analysis did not occur for the enclosure dam, indicating a high safety factor. However, nonlinear response history analysis gave reasonable results.
Big data related analysis techniques, the prescriptive analytics methodology improves the performance of passive learning models by ensuring that active learning secures high-quality learning data. Prescriptive analytics is a performance maximizing process by enhancing the machine learning models and optimizing systems through active learning to secure high-quality learning data. It is the best subscription value analysis that constructs the expensive category data efficiently. To expand the value of data by collecting research field, research propensity, and research activity information, customized researcher through prescriptive analysis such as predicting the situation at the time of execution after data pre-processing, deriving viable alternatives, and examining the validity of alternatives according to changes in the situation Provides research information service.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.8
no.3
/
pp.57-67
/
2018
The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.419-419
/
2022
최근 전 지구적 기후변화의 발생으로 수문현상의 규모와 빈도가 예측하기 어려운 수준으로 변화되고 있다. 이에 따라 정밀한 데이터를 활용한 수공구조물 운영 및 관리의 중요성이 대두되고 있다. 이 중에서도 다목적댐은 이·치수 측면에서 모두 활용되기 때문에 정밀한 댐 운영을 위한 댐 유입량 자료의 수집 및 관리가 필요하지만 현실적 한계로 인해 간접적으로 측정되고 있다. 현재 국내 다목적댐 저수지의 유입량은 댐시설 유지관리 기준(MW, 1994)에서 제시한 저수지 수위 변동량과 댐 방류량의 추정치로부터 계산하는 간접측정방법을 통해 산정되고 있다. 그러나 이와 같은 방법은 태풍이나 집중호우 등 대규모 홍수 발생 시 저수지 수위의 불균일성으로 인한 오차가 나타나며, 음유입량 및 톱니바퀴 형태의 자료가 발생하는 등 정확도 측면에서 한계가 있다. 따라서 본 연구에서는 한국건설기술연구원에서 2008년 개발한 물리적 기반의 분포형 유출해석 모형인 GRM(Grid based Rainfall-Runoff Model)을 활용하여 상류 유량관측소(옥동교 관측소, 영춘 관측소) 관측유량과 충주댐 지점 모의유량간의 경험공식을 도출하였으며, 이를 통해 상류 유량 관측소의 유량자료를 활용한 댐 유입량 직접산정이 가능하도록 하였다. 또한 다중 관측소 활용 시 댐 유입량 모의 성능이 개선되는지 여부를 확인하기 위해 3가지 경우(옥동교 관측소 단일, 영춘 관측소 단일, 옥동교·영춘 관측소 다중)로 구분하고 각 공식의 성능을 비교 평가하였다. 분석 결과 상류 관측소 관측유량과 댐 본체 지점의 모의유량이 비교적 높은 상관관계(0.79~0.96)를 보였으며, 단일 관측소를 활용한 공식 대비 다중 관측소를 활용한 공식이 더 높은 결정계수를 보였다.
Kyoung Hun Kim;Min Kyu Cho;Chang Young Park;Jeongho Kim;Soo Hyun Kim;Young Ghyu Sun;Jin Young Kim
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.6
/
pp.33-39
/
2023
Recently, reinforcement learning has been used to improve the communication performance of flying ad-hoc networks (FANETs) and to design mobility models. Mobility model is a key factor for predicting and controlling the movement of unmmaned aerial vehicle (UAVs). In this paper, we designed and analyzed the performance of Q-learning with fourier basis function approximation and Deep-Q Network (DQN) models for optimal path finding in a three-dimensional virtual environment where UAVs operate. The experimental results show that the DQN model is more suitable for optimal path finding than the Q-learning model in a three-dimensional virtual environment.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.2
/
pp.15-25
/
2024
For effective analysis of animal ecosystems, technology that can automatically identify the current status of animal habitats is crucial. Specifically, animal sound classification, which identifies species based on their sounds, is gaining great attention where video-based discrimination is impractical. Traditional studies have relied on a single deep learning model to classify animal sounds. However, sounds collected in outdoor settings often include substantial background noise, complicating the task for a single model. In addition, data imbalance among species may lead to biased model training. To address these challenges, in this paper, we propose an animal sound classification scheme that combines predictions from multiple models using Focal Loss, which adjusts penalties based on class data volume. Experiments on public datasets have demonstrated that our scheme can improve recall by up to 22.6% compared to an average of single models.
Journal of the Korea institute for structural maintenance and inspection
/
v.12
no.4
/
pp.87-97
/
2008
The purpose of this study is to analyse and compare experimentally flexural behavior of RC beams strengthened with CFRP plates by different methods, and finally develop the nonlinear analysis model with the aim of predicting the improving effects of structural capacity and the structural behaviors of RC beams. From this study, the characteristics of bond and flexural behavior of the prestressed CFRP plates were analyzed and examined. In deed, the beams were tested with experimental parameters of strengthening methods and prestressing level, and the developed analysis model was evaluated with the testing results. From this study, it is concluded that the developed analysis model have a good reliability and can be applied to the strengthening design of beams using CFRP plates.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.