• Title/Summary/Keyword: 예측성능 개선

Search Result 977, Processing Time 0.03 seconds

Improved Side Information Generation using Field Coding for Wyner-Ziv Codec (Wyner-Ziv 부호화기를 위한 필드 부호화 기반 개선된 보조정보 생성)

  • Han, Chan-Hee;Jeon, Yeong-Il;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.10-17
    • /
    • 2009
  • Wyner-Ziv video coding is a new video compression paradigm based on distributed source coding theory of Slepian-Wolf and Wyner-Ziv. Wyner-Ziv coding enables light-encoder/heavy-decoder structure by shifting complex modules including motion estimation/compensation task to the decoder. Instead of performing the complicated motion estimation process in the encoder, the Wyner-Ziv decoder performs the motion estimation for the generation of side information in order to make the predicted signal of the Wyner-Ziv frame. The efficiency of side information generation deeply affects the overall coding performance, since the bit-rates of the Wyner-Ziv coding is directly dependent on side information. In this paper, an improved side information generation method using field coding is proposed. In the proposed method, top fields are coded with the existing SI generation method and bottom fields are coded with new SI generation method using the information of the top fields. Simulation results show that the proposed method improves the quality of the side information and rate-distortion performance compared to the conventional method.

Macroblock-based Adaptive Interpolation Filter Method Using New Filter Selection Criterion in H.264/AVC (H.264/AVC에서 새로운 필터 선택 기준을 이용한 매크로 블록 기반 적응 보간 필터 방법)

  • Yoon, Kun-Su;Moon, Yong-Ho;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.312-320
    • /
    • 2008
  • The macroblock-based adaptive interpolation filter method has been considered to be able to achieve high coding efficiency in H.264/AVC. In this method, although the filter selection criterion considered in terms of rate and distortion have showed a good performance, it still leaves room for improvement. To improve high coding efficiency better than conventional method, we propose a new filter selection criterion which considers two bit rates, motion vector and prediction error, and reconstruction error. In addition, the algorithm for reducing the overhead of transmitting the selected filter information is presented. Experimental results show that the proposed method significantly improves the coding efficiency compared to ones using conventional criterion. It leads to about a 5.19% (1 reference frame) and 5.14% (5 reference frames) bit rate savings on average compared to H.264/AVC, respectively.

Fire-Flame Detection Using Fuzzy Logic (퍼지 로직을 이용한 화재 불꽃 감지)

  • Hwang, Hyun-Jae;Ko, Byoung-Chul
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.463-470
    • /
    • 2009
  • In this paper, we propose the advanced fire-flame detection algorithm using camera image for better performance than previous sensors-based systems which is limited on small area. Also, previous works using camera image were depend on a lot of heuristic thresholds or required an additional computation time. To solve these problems, we use statistical values and divide image into blocks to reduce the processing time. First, from the captured image, candidate flame regions are detected by a background model and fire colored models of the fire-flame. After the probability models are formed using the change of luminance, wavelet transform and the change of motion on time axis, they are used for membership function of fuzzy logic. Finally, the result function is made by the defuzzification, and the probability value of fire-flame is estimated. The proposed system has shown better performance when it compared to Toreyin's method which perform well among existing algorithms.

Improving the performance for Relation Networks using parameters tuning (파라미터 튜닝을 통한 Relation Networks 성능개선)

  • Lee, Hyun-Ok;Lim, Heui-Seok
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.377-380
    • /
    • 2018
  • 인간의 추론 능력이란 문제에 주어진 조건을 보고 문제 해결에 필요한 것이 무엇인지를 논리적으로 생각해 보는 것으로 문제 상황 속에서 일정한 규칙이나 성질을 발견하고 이를 수학적인 방법으로 법칙을 찾아내거나 해결하는 능력을 말한다. 이러한 인간인지 능력과 유사한 인공지능 시스템을 개발하는데 있어서 핵심적 도전은 비구조적 데이터(unstructured data)로부터 그 개체들(object)과 그들간의 관계(relation)에 대해 추론하는 능력을 부여하는 것이라고 할 수 있다. 지금까지 딥러닝(deep learning) 방법은 구조화 되지 않은 데이터로부터 문제를 해결하는 엄청난 진보를 가져왔지만, 명시적으로 개체간의 관계를 고려하지 않고 이를 수행해왔다. 최근 발표된 구조화되지 않은 데이터로부터 복잡한 관계 추론을 수행하는 심층신경망(deep neural networks)은 관계추론(relational reasoning)의 시도를 이해하는데 기대할 만한 접근법을 보여주고 있다. 그 첫 번째는 관계추론을 위한 간단한 신경망 모듈(A simple neural network module for relational reasoning) 인 RN(Relation Networks)이고, 두 번째는 시각적 관찰을 기반으로 실제대상의 미래 상태를 예측하는 범용 목적의 VIN(Visual Interaction Networks)이다. 관계 추론을 수행하는 이들 심층신경망(deep neural networks)은 세상을 객체(objects)와 그들의 관계(their relations)라는 체계로 분해하고, 신경망(neural networks)이 피상적으로는 매우 달라 보이지만 근본적으로는 공통관계를 갖는 장면들에 대하여 객체와 관계라는 새로운 결합(combinations)을 일반화할 수 있는 강력한 추론 능력(powerful ability to reason)을 보유할 수 있다는 것을 보여주고 있다. 본 논문에서는 관계 추론을 수행하는 심층신경망(deep neural networks) 중에서 Sort-of-CLEVR 데이터 셋(dataset)을 사용하여 RN(Relation Networks)의 성능을 재현 및 관찰해 보았으며, 더 나아가 파라미터(parameters) 튜닝을 통하여 RN(Relation Networks) 모델의 성능 개선방법을 제시하여 보았다.

A Study on Selective Composite Patch for Light Weight and Quality Improvement of Battery Module (배터리 모듈의 경량화 및 품질 향상을 위한 선택적 복합재료 패치에 관한 연구)

  • Lee, Seung-Chan;Ha, Sung Kyu
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.13-20
    • /
    • 2019
  • In this study, in order to improve the quality issue and component characteristics of the battery module, which is one of the major parts of the electric vehicle. The structure is reinforced by using the composite material and the mechanism structure optimization of Hybrid concept which can overcome the disadvantages of single material was performed and the performance was compared. For this purpose, figure out the main design variables of composite materials according to Classical Laminated Plate Theory (CLPT) and the algorithm for predicting composite material properties have been studied. Based on the mechanical properties of the designed composite materials, finite element analysis (FEM) and the performance of the battery module was verified. Consequently, according to the verification result, Hybrid Battery Module reinforced with Selective Composite Patch can reduce the weight by 30% and reduce the product thickness by 32.5% compared with the existing Al battery module and proved the merit of Hybrid structure such as maintaining impact performance.

A Prediction of the Long-Term Deflection of RC Beams Externally Bonded with CFRP and GFRP (CFRP와 GFRP로 외부 부착된 철근콘크리트보의 장기 처짐 예측)

  • Kim, Sung-Hu;Kim, Kwang-Soo;Han, Kyoung-Bong;Song, Seul-Ki;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.765-772
    • /
    • 2008
  • For RC structures, long-term deformation occurs due to the inherent characteristics, which are creep and shrinkage. In terms of serviceability, it is important to limit deflection caused by the deformation to the allowable deflection. In the recent years, various repair and strengthening methods have been used to improve performance of the existing RC structures. One of the typical methods is FRP externally bonded method (EBR). Fiber reinforced polymer (FRP) has been used worldwide as repair and strengthening materials due to its superior properties. Besides, it has to offer improved strengthening performance not only under instantaneous load but sustained load. Therefore, accurate prediction method of deflection for the RC members externally bonded with FRP under sustained load is required. In this paper, three beams were fabricated. Two beams were externally strengthened with one of CFRP plate and GFRP plate respectively. Total three beams were superimposed under sustained load of 25 kN. During 470 days, deflections at midspan were obtained. Moreover, creep coefficients and shrinkage strains were calculated by using ACI-209 code and CEB-FIP code. In order to predict the deflection of the beams, EMM, AEMM, Branson's method and Mayer's method were used. Through the experiment, it was found that the specimen with CFRP plate has the most flexural capacity and Mayer's method is the most precise method to predict total long-term deflections.

A study on the prediction of aquatic ecosystem health grade in ungauged rivers through the machine learning model based on GAN data (GAN 데이터 기반의 머신러닝 모델을 통한 미계측 하천에서의 수생태계 건강성 등급 예측 방안 연구)

  • Lee, Seoro;Lee, Jimin;Lee, Gwanjae;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.448-448
    • /
    • 2021
  • 최근 급격한 기후변화와 도시화 및 산업화로 인한 지류하천에서의 수량과 수질의 변동은 생물 다양성 감소와 수생태계 건강성 저하에 큰 영향을 미치고 있다. 효율적인 수생태 관리를 위해서는 지속적인 유량, 수질, 그리고 수생태 모니터링을 통한 데이터 축적과 더불어 면밀한 상관 분석을 통해 수생태계 건강성의 악화 원인을 규명해야 할 필요가 있다. 그러나 수많은 지류하천을 대상으로 한 지속적인 모니터링은 현실적으로 어려움이 있으며, 수생태계의 특성 상 단일 영향 인자만으로 수생태계의 건강성 변화와의 관계를 정확히 파악하는데 한계가 있다. 따라서 지류하천에서의 유량 및 수질의 시공간적인 변동성과 다양한 영향 인자를 고려하여 수생태계의 건강성을 효율적으로 예측할 수 있는 기술이 필요하다. 이에 본 연구에서는 경험적 데이터 기반의 머신러닝 모델 구축을 통해 미계측 하천에서의 수생태계 건강성 지수(BMI, TDI, FAI)의 등급(A to E)을 예측하고자 하였다. 머신러닝 모델은 학습 데이터셋의 양과 질에 따라 성능이 크게 달라질 수 있으며, 학습 데이터셋의 분포가 불균형적일 경우 과적합 또는 과소적합 문제가 발생할 수 있다. 이를 보완하고자 본 연구에서는 실제 측정망 데이터셋을 바탕으로 생성적 적대 신경망 GAN(Generative Adversarial Network) 알고리즘을 통해 머신러닝 모델 학습에 필요한 추가 데이터셋(유량, 수질, 기상, 수생태 등급)을 확보하였다. 머신러닝 모델의 성능은 5차 교차검증 과정을 통해 평가하였으며, GAN 데이터셋의 정확도는 실제 측정망 데이터셋의 정규분포와의 비교 분석을 통해 평가하였다. 최종적으로 SWAT(Soil and Water Assessment Tool) 모형을 통해 예측 된 미계측 하천에서의 데이터셋을 머신러닝 모델의 검증 자료로 사용하여 수생태계 건강성 등급 예측 정확도를 평가하였다. 본 연구에서의 GAN에 의해 강화된 머신러닝 모델은 수질 및 수생태 관리가 필요한 우심 지류하천 선정과 구조적/비구조적 최적관리기법에 따른 수생태계 건강성 개선 효과를 평가하는데 활용될 수 있을 것이다. 또한 이를 통해 예측된 미계측 하천에서의 수생태계 건강성 등급 자료는 수량-수질-수생태를 유기적으로 연계한 통합 물관리 정책을 수립하는데 기초자료로 활용될 수 있을 것이라 사료된다.

  • PDF

A study on pollutant loads prediction using a convolution neural networks (합성곱 신경망을 이용한 오염부하량 예측에 관한 연구)

  • Song, Chul Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.444-444
    • /
    • 2021
  • 하천의 오염부하량 관리 계획은 지속적인 모니터링을 통한 자료 구축과 모형을 이용한 예측결과를 기반으로 수립된다. 하천의 모니터링과 예측 분석은 많은 예산과 인력 등이 필요하나, 정부의 담당 공무원 수는 극히 부족한 상황이 일반적이다. 이에 정부는 전문가에게 관련 용역을 의뢰하지만, 한국과 같이 지형이 복잡한 지역에서의 오염부하량 배출 특성은 각각 다르게 나타나기 때문에 많은 예산 소모가 발생 된다. 이를 개선하고자, 본 연구는 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 BOD 및 총인의 부하량 예측 모형을 개발하였다. 합성곱 신경망의 입력자료는 일반적으로 RGB (red, green, bule) 사진을 이용하는데, 이를 그래도 오염부하량 예측에 활용하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이에, 본 연구에서는 오염부하량이 수문학적 조건과 토지이용 등의 변수에 의해 결정된다는 인과관계를 만족시키고자 수문학적 속성이 내재된 수문학적 이미지를 합성곱 신경망의 훈련자료로 사용하였다. 수문학적 이미지는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는데, 여기서 각 grid의 수문학적 속성은 SCS 토양보존국(soil conservation service, SCS)에서 발표한 수문학적 토양피복형수 (curve number, CN)를 이용하여 산출한다. 합성곱 신경망의 구조는 2개의 Convolution Layer와 1개의 Pulling Layer가 5회 반복하는 구조로 설정하고, 1개의 Flatten Layer, 3개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 마지막으로 1개의 Dense Layer가 연결되는 구조로 설계하였다. 이와 함께, 각 층의 활성화 함수는 정규화 선형함수 (ReLu)로, 마지막 Dense Layer의 활성화 함수는 연속변수가 도출될 수 있도록 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 연구의 대상지역은 경기도 가평군 조종천 유역으로 선정하였고, 연구기간은 2010년 1월 1일부터 2019년 12월 31일까지로, 2010년부터 2016년까지의 자료는 모형의 학습에, 2017년부터 2019년까지의 자료는 모형의 성능평가에 활용하였다. 모형의 예측 성능은 모형효율계수 (NSE), 평균제곱근오차(RMSE) 및 평균절대백분율오차(MAPE)를 이용하여 평가하였다. 그 결과, BOD 부하량에 대한 NSE는 0.9, RMSE는 1031.1 kg/day, MAPE는 11.5%로 나타났으며, 총인 부하량에 대한 NSE는 0.9, RMSE는 53.6 kg/day, MAPE는 17.9%로 나타나 본 연구의 모형은 우수(good)한 것으로 판단하였다. 이에, 본 연구의 모형은 일반 ANN 모형을 이용한 선행연구와는 달리 2차원 공간정보를 반영하여 오염부하량 모의가 가능했으며, 제한적인 입력자료를 이용하여 간편한 모델링이 가능하다는 장점을 나타냈다. 이를 통해 정부의 물관리 정책을 위한 의사결정 및 부족한 물관리 분야의 행정력에 도움이 될 것으로 생각된다.

  • PDF

Performance Enhancement of Virtual War Field Simulator for Future Autonomous Unmanned System (미래 자율무인체계를 위한 가상 전장 환경 시뮬레이터 성능 개선)

  • Lee, Jun Pyo;Kim, Sang Hee;Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.109-119
    • /
    • 2013
  • An unmanned ground vehicle(UGV) today plays a significant role in both civilian and military areas. Predominantly these systems are used to replace humans in hazardous situations. To take unmanned ground vehicles systems to the next level and increase their capabilities and the range of missions they are able to perform in the combat field, new technologies are needed in the area of command and control. For this reason, we present war field simulator based on information fusion technology to efficiently control UGV. In this paper, we present the war field simulator which is made of critical components, that is, simulation controller, virtual image viewer, and remote control device to efficiently control UGV in the future combat fields. In our information fusion technology, improved methods of target detection, recognition, and location are proposed. In addition, time reduction method of target detection is also proposed. In the consequence of the operation test, we expect that our war field simulator based on information fusion technology plays an important role in the future military operation significantly.

Development of testing apparatus and fundamental study for performance and cutting tool wear of EPB TBM in soft ground (토사지반 EPB TBM의 굴진성능 및 커팅툴 마모량에 관한 실험장비 개발 및 기초연구)

  • Kim, Dae-Young;Kang, Han-Byul;Shin, Young Jin;Jung, Jae-Hoon;Lee, Jae-won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.453-467
    • /
    • 2018
  • The excavation performance and the cutting tool wear prediction of shield TBM are very important issues for design and construction in TBM tunneling. For hard-rock TBMs, CSM and NTNU model have been widely used for prediction of disc cutter wear and penetration rate. But in case of soft-ground TBMs, the wear evaluation and the excavation performance have not been studied in details due to the complexity of the ground behavior and therefore few testing methods have been proposed. In this study, a new soil abrasion and penetration tester (SAPT) that simulates EPB TBM excavation process is introduced which overcomes the drawbacks of the previously developed soil abrasivity testers. Parametric tests for penetration rate, foam mixing ratio, foam concentration were conducted to evaluate influential parameters affecting TBM excavation and also ripper wear was measured in laboratory. The results of artificial soil specimen composed of 70% illite and 30% silica sand showed TBM additives such as foam play a key role in terms of excavation and tool wear.