The Journal of Korean Institute of Communications and Information Sciences
/
v.31
no.11C
/
pp.1058-1065
/
2006
In this paper, we propose a new motion vector coding algorithm suitable for MPEG-4 Part 10 video coding standard. In the proposed algorithm, the amount of the motion for a given video sequence is Predicted by using a characteristic of the motion vector distribution for the neighboring blocks as well as the MB_type, which is the syntax element in the standard. And one of the independent coding and the combined coding methods is adaptively employed to compress the motion vector difference. Simulation results show that the proposed algorithm outperforms the conventional methods without additional memory and calculations.
It is difficult to find an appropriate web site because exponentially growing web contains millions of web documents. Personalization of web search can be realized by recommending proper web sites using user profile but more efficient method is needed for estimating preference because user's evaluation on web contents presents many aspects of his characteristics. As user profile has a property of non-linearity, estimation by classifier is needed and combination of classifiers is necessary to anticipate diverse properties. Structure adaptive self-organizing map (SASOM) that is suitable for Pattern classification and visualization is an enhanced model of SOM and might be useful for web mining. Fuzzy integral is a combination method using classifiers' relevance that is defined subjectively. In this paper, estimation of user profile is conducted by using ensemble of SASOM's teamed independently based on fuzzy integral and evaluated by Syskill & Webert UCI benchmark data. Experimental results show that the proposed method performs better than previous naive Bayes classifier as well as voting of SASOM's.
The Journal of Korean Institute of Communications and Information Sciences
/
v.29
no.5B
/
pp.498-507
/
2004
The fast and Precise service for the users request is the most important in the World Wide Web. However, the lest service is difficult due to the rapid increase of the Internet users recently. The Shared Web Caching (SWC) is one of the methods solving this problem. The performance of SWC is highly depend on the hit rate and the hit rate is effected by the memory size, processing speed of the server, load balancing and so on. The conventional load balancing is usually based on the state history of system, but the prediction of the state of the system can be used for the load balancing that will further improve the hit rate. In this study, a Hot Spot Prediction Method (HSPM) has been suggested to improve the throughputs of the proxy. The predicted hot spots, which is the item most frequently requested, should be predicted beforehand. The result show that the suggested method is better than the consistent hashing in the point of the load balancing and the hit rate.
In order to optimize the performance of a lithium-ion battery, a performance prediction modeling technique that considers various degradation factors is required. In this work, mathematical modeling was carried-out to predict the change in discharging behavior and cycle life, taking into account the cycle aging of lithium-ion batteries. In order to validate the modeling, a cycling test was performed at the charge/discharge rate of 0.25C, and discharging behavior was measured through RPT (Reference Performance Test) performed at 30 cycle intervals. The accuracy of cycle life prediction was improved by considering the break-in mechanism, one of the phenomena occurring in the BOL (beginning of life), in the model for predicting the cycle life of lithium-ion batteries. The predicted change in cycle life based on the model was in good agreement with the experimental results.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.370-370
/
2021
태풍으로 인한 피해를 줄이기 위해 경로, 강도 및 폭풍해일의 사전 예측은 매우 중요하다. 이중, 태풍의 경로와는 달리 강도 및 폭풍해일의 예측에 있어서 바람장은 수치 모델의 초기 입력값으로 요구되기 때문에 정확한 바람장 정보는 필수적이다. 대기 바람장 예측 방법은 크게 해석적 모델링, 라디오존데 측정과 위성 사진을 통한 산출로 구분할 수 있다. Holland의 해석적 모델링은 비교적 적은 입력값이 필요하지만 정확도가 낮고, 라디오존데 측정은 정확도가 높지만 점 측정에 가깝기 때문에 이차원 바람장을 산출하기에 한계가 있다. 위성 사진을 통한 바람장 산출은 위성기술의 고도화로 관측 채널 수 및 시공간 해상도가 크게 증가하고 있기 때문에 다양한 기법들이 개발되고 있다. 본 연구에서는 생성적 적대 신경망 (Generative Adversarial Network, GAN)을 통해 일련의 연속된 과거 적외 채널 위성 사진 흐름의 패턴을 학습시켜 미래 위성 사진을 예측하고, 예측된 연속적인 위성 사진들의 교차상관 (cross-correlation)을 통해 바람장을 산출하였다. GAN을 적용함에 있어 2011년부터 2019년까지 한반도 근방에 접근했던 태풍 중에 4등급 이상인 68개의 태풍의 한 시간 간격으로 촬영된 총 15,683개의 위성 사진을 학습시켜 생성된 이미지들은 실측 위성 사진들과 매우 유사한 것으로 나타났다. 또한, 생성된 이미지들의 교차상관으로 얻어진 바람장 벡터들의 풍향, 풍속, 벡터 일관성 및 수치 모델과의 비교를 통해 각각의 벡터들의 품질 계수를 구하고 정확도가 높은 벡터들만 결과에 포함하였다. 마지막으로 국내 6개의 라디오존데 관측점에서의 실측 벡터와의 비교를 통해 본 연구 결과의 실효성을 검증하였다. 본 연구에서 확장하여, 이와 같이 AI 기법과 이미지 교차상관 기법을 사용하여 얻어진 바람장으로부터 태풍 강도예측에 필요한 요소인 태풍의 눈의 위치, 최고 속도와 태풍 반경을 직접적으로 산출할 수 있고. 이러한 위성 사진을 기반으로 한 바람장은 단순화된 해석적 바람장을 대체하여 폭풍 해일 모델링의 예측 성능 개선에 기여할 것으로 보여진다.
In this paper, experimental program and associated numerical study were carried out to evaluate the fire resistance of unprotected concrete-filled rectangular steel tubular (CFT) columns subjected to the standard fire. The key testing parameters included the length effect, the load ratio, and the sectional dimensions of the CFT columns. Temperature distribution and axial deformation of the CFT column specimens were measured and analyzed. Rather early local buckling of steel tubes was observed in all the specimens. This caused subsequent load transfer from steel tube to concrete, and eventually triggered concrete crushing, or complete loss of the load bearing capacity of the column. This implies that the limit state of local buckling as well as overall flexural buckling should be incorporated in fire design procedure. As expected, the fire resistance time of specimen with higher load ratio consistently lessened. The prediction of fire resistance time of unprotected CFT columns based on the limiting steel temperature in current design codes or the formula proposed by previous studies is slightly conservative compared to the fire test results available. To establish the finite element analysis model that can be used to predict the thermal and structural behaviour of unprotected CFT columns in fire, the fully coupled thermal-stress analysis was also tried by using the commercial code ABAQUS. The numerical results showed a reasonable global correlation with the experimental results.
Pregnant women may need to take medications to treat preexisting diseases or diseases that develop during pregnancy. However, some drugs may be fetotoxic and lead to, for example, teratogenicity and growth retardation. Predicting the fetotoxicity of drugs is thus important for the health of the mother and fetus. The fetotoxicity of many drugs has not been established because various challenges hinder the ability of researchers to determine their fetotoxicity. The need exists for in silico-based fetotoxicity assessment models, as they can modernize the testing paradigm, improve predictability, and reduce the use of animals and the costs of fetotoxicity testing. In this study, we collected data on the fetotoxicity of drugs and constructed fetotoxicity prediction models based on various machine learning algorithms. We optimized the models for more precise predictions by tuning the hyperparameters. We then performed quantitative performance evaluations. The results indicated that the constructed machine learning-based models had high performance (AUROC >0.85, AUPR >0.9) in fetotoxicity prediction. We also analyzed the feature importance of our model's predictions, which could be leveraged to identify the specific features of drugs that are strongly associated with fetotoxicity. The proposed model can be used to prescreen drugs and drug candidates at a lower cost and in less time. It provides a predictive score for fetotoxicity risk, which may be beneficial in the design of studies on fetotoxicity in human pregnancy.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.225-227
/
2019
최근 다양한 개인방송 플랫폼에 의해 엄청난 양의 콘텐츠가 업로드 되고 있으며 그 중 축구와 야구와 같은 스포츠 영상이 차지하는 비율이 상당하다. 방송사에서는 시청자들이 편의를 위해 경기 영상 중 흥미를 끌거나 또는 중요한 장면을 모아 하이라이트 영상을 만들어 제공하는데, 이는 시간과 비용이 많이 소요되는 문제가 있다. 이에 본 논문에서는 스포츠 영상에서 자동으로 하이라이트를 예측하는 모델을 제안하다. 우리의 모델은 오디오와 이미지 정보를 함께 사용하며, 영상의 단기적 전후관계와 중장기적 흐름을 동시에 파악하는 모델을 제시한다. 또한 좋은 특징벡터를 추출하기 위해 GAN을 결합하는 방법을 설명한다. 제안하는 모델들을 야구 경기 영상을 이용하여 평가한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.06a
/
pp.262-263
/
2014
현재 MPEG 에서 Royalty-Free 비디오 코덱인 Type-1 표준으로 진행중인 IVC(Internet Video Coding)에서는 저지연 모드(LD: Low-Delay) 부호화 구조에서 비참조 P 프레임 부호화 기법을 적응적으로 사용하여 부호화 이득을 얻고 있다. 비참조 P 프레임 기법은 P 프레임의 타입을 지정하여 고정된 부호화 구조의 비참조 P 프레임을 적용하고 있으나, ITM(IVC Test Model) 9.0 에 구현된 부호화 구조는 다중참조 프레임(MRF: Multiple Reference Frame)을 사용할 때 시간적 예측 거리가 먼 참조 프레임을 먼저 예측하는 단점이 있다. 본 논문에서는 다중참조 프레임에서 기존의 P 프레임 타입 설정을 변경하여 비참조 P 프레임의 부호화 구조를 개선하였다. 실험결과 제안 기법은 시퀀스에 따른 큰 성능 저하 없이 기존 기법 대비 0.6% 정도의 추가적인 비트율 감소로 얻음으로써 비참조 P 프레임 기법이 ITM 9.0 대비 7.9% 정도의 비트율 감소를 얻음을 확인하였다.
전자상거래에서 사용되고 있는 추천시스템은 사용자들의 프로파일과 이들의 정보를 바탕으로 사용자가 선호할 만한 아이템을 추천한다. 추천시스템에서 널리 사용되고 있는 협력적 필터링 방식은 사용자들 사이의 선호도 평가치를 비교하여 유사 사용자를 선택하고, 아이템에 대한 유사 사용자의 선호도 평가치를 기반으로 하여 추천하고자 하는 아이템에 대한 사용자의 선호도를 예측하는 것이다. 하지만 사용자의 선호도가 적은 데이터로 인한 희소성 문제는 추천시스템의 성능을 저해하는 요인으로 작용하고 있다. 이러한 희소성의 문제는 선호도 평가 자료에 나타난 아이템들의 총수에 비하여 사용자가 선호한 아이템의 수가 아주 적기 때문에 발생하며, 새로운 사용자의 경우에는 아이템에 대한 선호도 평가치가 없어 유사 사용자를 선택할 수가 없어 나타나며 심한 경우에는 아이템을 전혀 추천할 수 없게 된다. 이리할 추천 시스템의 희소성문제를 해결차기 위한 방법은 희소성이 높은 데이터들에 대한 희소성을 감소시키는 것이다. 따라서 본 논문에서는 아이템에 대한 희소성을 조사하여 협력적 필터링에서 희소성 아이템이 MAE에 미치는 영향을 분석하였다. 그리고 희소성 문제를 완화하여 예측 정확도를 높이기 위한 방법으로 선호도가 적은 아이템에 대해 희소성을 최소화하는 연구와 이에 따라 희소성과 MAE의 값을 개선하는 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.