• Title/Summary/Keyword: 예측성능 개선

Search Result 977, Processing Time 0.039 seconds

Comparison of MEL-LPC and LPC-MEL Analysis Method for the Korean Speech Recognition Systems. (한국어 음성 인식 시스템을 위한 MEL-LPC 분석 방법과 LPC-MEL 분석 방법의 비교)

  • 김주곤;김범국;정호열;정현열
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.833-836
    • /
    • 2001
  • 본 논문에서는 한국어 음성인식 시스템의 성능 향상을 위해 청각 주파수 분해능을 가진 MEL-LPC Cepstrum을 음소단위의 HMM(Hidden Markov Model)을 기반으로 하는 인식 시스템에 적용하여 그 결과를 비교 검토하였다. 선형예측(LP) 분석 후에 후처리로서 주파수를 왜곡시킨 LPC-MEL 분석이 계산량이 적고 효과적이라 일반적으로 많이 사용되고 있으나 주파수 분해능은 많이 개선되지 않는다. 따라서 본 논문에서는 주파수 분해능을 개선하기 위해, 원 음성신호로부터 직접적으로 멜주파수로 왜곡시킨 후 선형 예측 분석을 수행하는 MEL-LPC 분석방법을 이용한 음소기반의 화자 독립 음성인식 시스템을 구성하여 기존의 LPC-MEL 분석방법과 비교실험을 통하여 MEL-LPC 분석방법의 유효성을 검토하였다. 실험에 사용한 음성 데이터베이스는 음소 및 단어 인식실험에서는 ETRI 445단어 DB, 연속 숫자음인식 실험에서는 KLE 4연속 숫자음 DB를 사용하였다. 화자 독립 음소인식 실험의 경우, 묵음을 제외한 47개의 유사 음소에 대하여 4상태 3출력의 Left-to-Right 모델을이용하였다. 단어 및 연속 숫자음 인식 실험의 경우, 유한상태 네트워크에 의한 OPDP법을 이용하였다. 화자 독립 음소, 단어 및 4연속 숫자음 인식 실험결과, 기존의 LPC-MEL Cepstrum을 사용한 경우보다 MEL-LPC Cepstum을 사용한 경우가 더 높은 인식률을 나타내어 한국어 음성인식 시스템에서 MEL-LPC 분석방법의 유효성을 확인할 수 있었다.

  • PDF

Improvement of online game matchmaking using machine learning (기계학습을 활용한 온라인게임 매치메이킹 개선방안)

  • Kim, Yongwoo;Kim, Young‐Min
    • Journal of Korea Game Society
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In online games, interactions with other players may threaten player satisfaction. Therefore, matching players of similar skill levels is important for players' experience. However, with the current evaluation method which is only based on the final result of the game, newbies and returning players are difficult to be matched properly. In this study, we propose a method to improve matchmaking quality. We build machine learning models to predict the MMR of players and derive the basis of the prediction. The error of the best model was 40.4% of the average MMR range, confirming that the proposed method can immediately place players in a league close to their current skill level. In addition, the basis of predictions may help players to accept the result.

Iterative Deep Convolutional Grid Warping Network for Joint Depth Upsampling (반복적인 격자 워핑 기법을 이용한 깊이 영상 초해상도 기술)

  • Yang, Yoonmo;Kim, Dongsin;Oh, Byung Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.205-207
    • /
    • 2020
  • This paper proposes a novel deep learning-based method to upsample a depth map. Most conventional methods estimate high-resolution depth map by modifying pixel value of given depth map using high-resolution color image and low-resolution depth map. However, these methods cause under- or over-shooting problems that restrict performance improvement. To overcome these problems, the proposed method iteratively performs grid warping scheme which shifts pixel values to restore blurred image for estimating high-resolution depth map. Experimental results show that the proposed method improves both quantitative and visual quality compared to the existing method.

  • PDF

Performance Evaluation Systems in Water Distribution Network (상수관망의 성능평가를 위한 진단체계 구축)

  • Kim, Ju-Hwan;Kim, Jung-Hyun;Lee, Doo-Jin;Woo, Hyung-Min;Bae, Cheol-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.864-868
    • /
    • 2008
  • Water transmission and distribution systems play a important role to deliver safe and clean water and are responsible for the most direct impacts of water utilities to customers. Although the performance of WDS(Water Distribution Systems) should be evaluated by a certain standards, interests has not been in WDS and developed due to invisible, hard-working and insufficient information in the evaluation process in Korea till now. The investigations and researches were carried out to develop software to assist the evaluation of WDS with respects to hydraulics, water quality and structural analysis methods. The methodologies have been developed which can be used to estimate the performance to water distribution network and software are implemented by the process. Developed systems are consisted with database, analysis techniques, simulation models, decision support systems and other tools. The concepts and functions are introduced in this paper and the performance index are discussed for accurate assessment of water distribution systems.

  • PDF

Imbalanced Data Improvement Techniques Based on SMOTE and Light GBM (SMOTE와 Light GBM 기반의 불균형 데이터 개선 기법)

  • Young-Jin, Han;In-Whee, Joe
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.12
    • /
    • pp.445-452
    • /
    • 2022
  • Class distribution of unbalanced data is an important part of the digital world and is a significant part of cybersecurity. Abnormal activity of unbalanced data should be found and problems solved. Although a system capable of tracking patterns in all transactions is needed, machine learning with disproportionate data, which typically has abnormal patterns, can ignore and degrade performance for minority layers, and predictive models can be inaccurately biased. In this paper, we predict target variables and improve accuracy by combining estimates using Synthetic Minority Oversampling Technique (SMOTE) and Light GBM algorithms as an approach to address unbalanced datasets. Experimental results were compared with logistic regression, decision tree, KNN, Random Forest, and XGBoost algorithms. The performance was similar in accuracy and reproduction rate, but in precision, two algorithms performed at Random Forest 80.76% and Light GBM 97.16%, and in F1-score, Random Forest 84.67% and Light GBM 91.96%. As a result of this experiment, it was confirmed that Light GBM's performance was similar without deviation or improved by up to 16% compared to five algorithms.

A study on the improvement ransomware detection performance using combine sampling methods (혼합샘플링 기법을 사용한 랜섬웨어탐지 성능향상에 관한 연구)

  • Kim Soo Chul;Lee Hyung Dong;Byun Kyung Keun;Shin Yong Tae
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.69-77
    • /
    • 2023
  • Recently, ransomware damage has been increasing rapidly around the world, including Irish health authorities and U.S. oil pipelines, and is causing damage to all sectors of society. In particular, research using machine learning as well as existing detection methods is increasing for ransomware detection and response. However, traditional machine learning has a problem in that it is difficult to extract accurate predictions because the model tends to predict in the direction where there is a lot of data. Accordingly, in an imbalance class consisting of a large number of non-Ransomware (normal code or malware) and a small number of Ransomware, a technique for resolving the imbalance and improving ransomware detection performance is proposed. In this experiment, we use two scenarios (Binary, Multi Classification) to confirm that the sampling technique improves the detection performance of a small number of classes while maintaining the detection performance of a large number of classes. In particular, the proposed mixed sampling technique (SMOTE+ENN) resulted in a performance(G-mean, F1-score) improvement of more than 10%.

Hybrid Machine Learning Model for Predicting the Direction of KOSPI Securities (코스피 방향 예측을 위한 하이브리드 머신러닝 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2021
  • In the past, there have been various studies on predicting the stock market by machine learning techniques using stock price data and financial big data. As stock index ETFs that can be traded through HTS and MTS are created, research on predicting stock indices has recently attracted attention. In this paper, machine learning models for KOSPI's up and down predictions are implemented separately. These models are optimized through a grid search of their control parameters. In addition, a hybrid machine learning model that combines individual models is proposed to improve the precision and increase the ETF trading return. The performance of the predictiion models is evaluated by the accuracy and the precision that determines the ETF trading return. The accuracy and precision of the hybrid up prediction model are 72.1 % and 63.8 %, and those of the down prediction model are 79.8% and 64.3%. The precision of the hybrid down prediction model is improved by at least 14.3 % and at most 20.5 %. The hybrid up and down prediction models show an ETF trading return of 10.49%, and 25.91%, respectively. Trading inverse×2 and leverage ETF can increase the return by 1.5 to 2 times. Further research on a down prediction machine learning model is expected to increase the rate of return.

Improvement of the Linear Predictive Coding with Windowed Autocorrelation (윈도우가 적용된 자기상관에 의한 선형예측부호의 개선)

  • Lee, Chang-Young;Lee, Chai-Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.186-192
    • /
    • 2011
  • In this paper, we propose a new procedure for improvement of the linear predictive coding. To reduce the error power incurred by the coding, we interchanged the order of the two procedures of windowing on the signal and linear prediction. This scheme corresponds to LPC extraction with windowed autocorrelation. The proposed method requires more calculational time because it necessitates matrix inversion on more parameters than the conventional technique where an efficient Levinson-Durbin recursive procedure is applicable with smaller parameters. Experimental test over various speech phonemes showed, however, that our procedure yields about 5 % less power distortion compared to the conventional technique. Consequently, the proposed method in this paper is thought to be preferable to the conventional technique as far as the fidelity is concerned. In a separate study of speaker-dependent speech recognition test for 50 isolated words pronounced by 40 people, our approach yielded better performance too.

Forecasting the Busan Container Volume Using XGBoost Approach based on Machine Learning Model (기계 학습 모델을 통해 XGBoost 기법을 활용한 부산 컨테이너 물동량 예측)

  • Nguyen Thi Phuong Thanh;Gyu Sung Cho
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Container volume is a very important factor in accurate evaluation of port performance, and accurate prediction of effective port development and operation strategies is essential. However, it is difficult to improve the accuracy of container volume prediction due to rapid changes in the marine industry. To solve this problem, it is necessary to analyze the impact on port performance using the Internet of Things (IoT) and apply it to improve the competitiveness and efficiency of Busan Port. Therefore, this study aims to develop a prediction model for predicting the future container volume of Busan Port, and through this, focuses on improving port productivity and making improved decision-making by port management agencies. In order to predict port container volume, this study introduced the Extreme Gradient Boosting (XGBoost) technique of a machine learning model. XGBoost stands out of its higher accuracy, faster learning and prediction than other algorithms, preventing overfitting, along with providing Feature Importance. Especially, XGBoost can be used directly for regression predictive modelling, which helps improve the accuracy of the volume prediction model presented in previous studies. Through this, this study can accurately and reliably predict container volume by the proposed method with a 4.3% MAPE (Mean absolute percentage error) value, highlighting its high forecasting accuracy. It is believed that the accuracy of Busan container volume can be increased through the methodology presented in this study.

Study on Space-Time Adaptive Processing Based on Novel Clutter Covariance Matrix Estimation Using Median Value (중위수를 이용한 새로운 간섭 공분산 행렬의 예측이 적용된 Space-Time Adaptive Processing에 대한 연구)

  • Kang, Sung-Yong;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2010
  • In this paper, we presented a signal model of STAP and actual environment of clutter. The novel estimation method of clutter covariance matrix using median value is proposed to overcome serious performance degradation after NHD in nonhomogeneous clutter. Eigen value characteristic is improved through diagonal loading. Target detection ability and SINR loss of the proposed method though MSMI statistic is also compared with conventional method using average value. The simulation results, confirm the proposed method has better performance than others.