The Transactions of the Korea Information Processing Society
/
v.3
no.1
/
pp.181-190
/
1996
Pipelined architecture improves processor performance by overlapping the execution of several different instructions. The effect of control hazard stalls the pipeline and reduces processor performance. In order to reduce the effect of control hazard caused by branch, we proposes a new approach combining both branch prediction and two paths strategy. In addition, we verify the performance improvement in a proposed approach by utilizing system performance metric CPI rather than BEP.
Proceedings of the Korean Operations and Management Science Society Conference
/
1995.04a
/
pp.111-120
/
1995
통합생산시스템에서의 고장, 정비 및 가용 도는 매우 중요한 역할을 한다. 시스템 설계시의 RAM 파라메터의 결정은 시스템의 성능과 소요비용 및 구성(System Configuration)등에 크게 영향을 미친다. 이러한 시스템관련 요소의 숫자가 많거나 불확실할 경우는 시스템의 성능예측이 매우 복잡하게 된다. 이러한 시스템의 성능(performance) 평가를 위하여 발견적 방법인 GMDH(Group Method Data Handlinng) Type Modeling 방법을 이용하여 FMS의 성능 평가를 시도하였다. RAM 및 기계작업시간의 Data로부터 시스템성능의 척도로서 단위 사이클 기간동안의 생산률, 시스템내의 총 흐름시간, 각 작업장이 기계의 RAM 및 LCC등을 고려하였다. GMDH 알고리즘의 계산을 위한 프로그램을 개발하고, 이를 L형 Bracket제조시스템의 성능 예측에 시험 적용하였다. 본 Modeling에 의한 시스템의 성능예측 방법은 입출력 자료의 처리과정을 개선할 경우 FMS계획및 운영 단계에서 성능평가에 매우 유용하게 활용될수 있을 것으로 본다.
The Transactions of the Korea Information Processing Society
/
v.5
no.6
/
pp.1652-1659
/
1998
To provide performance gains by reducing the operand referencing latency and data cache bandwidth requirements, we present an operand reference prediction cache (ORPC) which predicts operand value and address translation during the instruction fetch stage. The prediction is verified in the early stage, and thus it minimizes the performance penalty caused by the misprediction. Through the trace-driven simulation of six benchmark programs, the performance improvement by proposed three aRPC stmctures (OfiPC1, OfiPC2. ORPC3)is analysed and validated.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.226-226
/
2023
하천유량, 댐유입량 등을 예측하기 위해 다양한 Long Short-Term Memory (LSTM) 방법들이 활발하게 적용 및 개발되고 있다. 최근 연구들은 s2s (sequence-to-sequence), Attention 기법 등을 통해 LSTM의 성능을 개선할 수 있음을 제시하고 있다. 이에 따라 본 연구에서는 LSTM-s2s와 LSTM-s2s에 attention까지 첨가한 모델을 구축하고, 시간 단위 자료를 사용하여 유입량 예측을 수행하여, 이의 실제 댐 운영에 모델들의 활용 가능성을 확인하고자 하였다. 소양강댐 유역을 대상으로 2013년부터 2020년까지의 유입량 시자료와 종관기상관측기온 및 강수량 데이터를 학습, 검증, 평가로 나누어 훈련한 후, 모델의 성능 평가를 진행하였다. 최적 시퀀스 길이를 결정하기 위해 R2, RRMSE, CC, NSE, 그리고 PBIAS을 사용하였다. 분석 결과, LSTM-s2s 모델보다 attention까지 첨가한 모델이 전반적으로 성능이 우수했으며, attention 첨가 모델이 첨두값 예측에서도 높은 정확도를 보였다. 두 모델 모두 첨두값 발생 동안 유량 패턴을 잘 반영하였지만 세밀한 시간 단위 변화량 패턴 모의에는 한계가 있었다. 시간 단위 예측의 한계에도 불구하고, LSTM-s2s에 attention까지 추가한 모델은 향후 댐유입량 예측에 활용될 수 있을 것으로 판단한다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.26
no.6A
/
pp.913-922
/
2001
Multi-Carrier CDMA 시스템에서 불완전한 채널 예측과 다중사용자 간섭은 시스템의 성능 저하를 유발한다. 본 논문에서는 역방향 링크에서 파일럿 심볼을 이용하여 채널을 예측하는 Multi-Carrier CDMA BPSK 시스템에서 불완전한 채널 예측과 다중사용자 간섭의 영향을 연구하였다. 더욱이, 라이시안 페이딩 채널의 역방향 링크에서 최대비 합성 공간 다이버시티와 선택 합성 공간 다이버시티 기법을 적용한 성능 개선에 대하여 연구하였다. 수치계산 결과, 파일럿 심볼을 이용하여 채널을 예측하는 Multi-Carrier CDMA BPSK 시스템의 BER 성능은 등가 잡음 대역폭의 분산($\sigma$$^2$$_{c}$)에 매우 민감하나 무선 채널에서의 신호 전력 대 잡음 전력비에는 그리 심하지 않았다. 불완전한 채널 예측에 의한 BER 열화와 파일럿 심볼 간격의 최적화는 라이시안 페이딩 채널에서 Multi-Carrier CDMA BPSK 시스템의 BER 계산을 통하여 얻을 수 있었다. 그리고 불완전한 채널 예측에 의한 BER 열화는 신호 전력 대 잡음 전력비와 채널 예측 필터의 등가 잡음 대역폭에 관계하고 있음을 알 수 있었다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.10
/
pp.1863-1868
/
2006
In this paper we propose the communication system model which improve the performance of OFDM based DSRC system by adopting selective pilot overlay channel estimation scheme. Assuming AWGN and fading channel environment, the performance of OFDM system according to IEEE802.11p physical layer being standardized for OFDM based DSRC is obtained, and the performance of proposed OFDM based DSRC system adopting selective pilot overlay channel estimation scheme is compared with the conventional system. from the simulation results, it is shown that proposed system is superior to conventional one due to reducing channel estimation error.
In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the ConvLSTM2D U-Net model using a RainNet model and an extrapolation-based advection model. In addition, we tried to improve the uncertainty in the model training process by performing learning not only with a single model but also with 10 ensemble models. The trained neural network rainfall prediction model was optimized to generate 10-minute advance prediction data using four consecutive data of the past 30 minutes from the present. The results of deep learning rainfall prediction models are difficult to identify schematically distinct differences, but with ConvLSTM2D U-Net, the magnitude of the prediction error is the smallest and the location of rainfall is relatively accurate. In particular, the ensemble ConvLSTM2D U-Net showed high CSI, low MAE, and a narrow error range, and predicted rainfall more accurately and stable prediction performance than other models. However, the prediction performance for a specific point was very low compared to the prediction performance for the entire area, and the deep learning rainfall prediction model also had limitations. Through this study, it was confirmed that the ConvLSTM2D U-Net neural network structure to account for the change of time could increase the prediction accuracy, but there is still a limitation of the convolution deep neural network model due to spatial smoothing in the strong rainfall region or detailed rainfall prediction.
In this paper, the BER performance of IEEE 802.11a OFDM WLAN system is obtained by simulation and it is shown that the proposed modified channel estimation algorithm improves the channel estimation performance of the system. The wireless channel used in channel simulation includes AWGN and delay spread channel implemented by TDL model. At first, the performance of OFDM WLAN system according to data rate and coding rate defined in standard is evaluated in AWGN channel. Then, imperfect channel estimation in indoor wireless channel is considered. After the performance of conventional channel estimation scheme using only two long training symbols is evaluated, and that of proposed modified channel estimation scheme using additional 8 short training symbol is compared with it. From the simulation results, it is shown that modified channel estimation scheme provides reduced channel estimation error and improves the channel estimation performance due to noise averaging effect with the same preamble format as defined in specification.
In this paper, we present a deep neural network-based prediction model that processes and analyzes the corporate credit and personal credit information of individual business owners as a new method to predict the default rate of individual business more accurately. In modeling research in various fields, feature selection techniques have been actively studied as a method for improving performance, especially in predictive models including many features. In this paper, after statistical verification of macroeconomic indicators (macro variables) and credit information (micro variables), which are input variables used in the default rate prediction model, additionally, through the credit information feature selection method, the final feature set that improves prediction performance was identified. The proposed credit information feature selection method as an iterative & hybrid method that combines the filter-based and wrapper-based method builds submodels, constructs subsets by extracting important variables of the maximum performance submodels, and determines the final feature set through prediction performance analysis of the subset and the subset combined set.
Conditional branch prediction is an important technique for improving processor performance. Branch mispredictions, however, waste a large number of cycles, inhibit out-of-order execution, and waste electric power on mis-speculated instructions. Hence, the branch predictor with higher accuracy is necessary for good processor performance. In global-history-based predictors like gshare and GAg, many mispredictions come from commit update of the history. Some works on this subject have discussed the need for speculative update of the history and recovery mechanisms for branch mispredictions. In this paper, we present a simple mechanism for recovering the branch history after a misprediction. The proposed mechanism adds an age_counter to the original predictor and doubles the size of the branch history register. The age_counter counts the number of outstanding branches and uses it to recover the branch history register. Simulation results on the Simplescalar 3.0/PISA tool set and the SPECINTgS benchmarks show that gshare and GAg with the proposed recovery mechanism improved the average prediction accuracy by 2.14$\%$ and 9.21$\%$, respectively and the average IPC by 8.75$\%$ and 18.08$\%$, respectively over the original predictor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.